Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vet World ; 14(3): 794-802, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33935430

RESUMO

BACKGROUND AND AIM: African swine fever is one of the severe pathogens of swine. It has a significant impact on production and economics. So far, there are no known remedies, such as vaccines or drugs, reported working successfully. In the present study, the natural oil blend formulation's (NOBF) efficacy was evaluated against ASFV in vitro using porcine alveolar macrophages (PAMs) cells of swine. MATERIALS AND METHODS: The capacity of NOBF against the ASFV was tested in vitro. The NOBF combines Eucalyptus globulus, Pinus sylvestris, and Lavandula latifolia. We used a 2-fold serial dilution to test the NOBF formulation dose, that is, 105 HAD50/mL, against purified lethal dose of African swine in primary PAMs cells of swine. The PAM cells survival, real-time polymerase chain reaction (PCR) test, and hemadsorption (HAD) observation were performed to check the NOBF efficacy against ASFV. RESULTS: The in vitro trial results demonstrated that NOBF up to dilution 13 or 0.000625 mL deactivates the lethal dose 105 HAD50 of ASFV. There was no HAD (Rosetta formation) up to dilution 12 or 0.00125 mL of NOBF. The Ct value obtained by running real-time PCR of the NOBF group at 96 h post-infection was the same as the initial value or lower (25), whereas the Ct value of positive controls increased several folds (17.84). CONCLUSION: The in vitro trial demonstrated that NOBF could deactivate the ASFV. The NOBF has the potential to act as anti-ASFV agent in the field. The next step is to conduct in vivo level trial to determine its efficacy.

2.
Fish Shellfish Immunol ; 22(4): 295-307, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17118674

RESUMO

The potential for oral vaccination of crayfish against white spot syndrome virus was investigated. The envelope proteins VP19 and VP28 were expressed in yeast (Pichia pastoris). The expressed proteins were used as oral vaccines in different forms viz., in whole culture form, whole culture sonicated form, whole culture centrifuged supernatant form, and cell residue form. The recombinant proteins were mixed with food pellets and fed to crayfish for 25 days. The vaccinated groups were divided into two even groups and challenged on the 3rd and 21st day of post vaccination. Among different vaccine groups the relative percent survival (RPS) values of sonicated form and supernatant form vaccines were found the best and met the criterion (>RPS 60%) of effective vaccine even after 21st day of post vaccination. Development of vaccine by using recombinant proteins VP19 and VP28 in yeast as expression vector was feasible with significant effects.


Assuntos
Astacoidea/virologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais , Vírus da Síndrome da Mancha Branca 1/imunologia , Administração Oral , Animais , Primers do DNA/química , DNA Viral/genética , Pichia/fisiologia , Plasmídeos/genética , Análise de Sobrevida , Fatores de Tempo , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/biossíntese , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA