Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 174: 116447, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518606

RESUMO

Sepsis-induced acute respiratory distress syndrome (ARDS) causes significant fatalities worldwide and lacks pharmacological intervention. Alveolar fluid clearance (AFC) plays a pivotal role in the remission of ARDS and is markedly impaired in the pathogenesis of ARDS. Here, we demonstrated that erythropoietin could effectively ameliorate lung injury manifestations and lethality, restore lung function and promote AFC in a rat model of lipopolysaccharide (LPS)-induced ARDS. Moreover, it was proven that EPO-induced restoration of AFC occurs through triggering the total protein expression of ENaC and Na,K-ATPase channels, enhancing their protein abundance in the membrane, and suppressing their ubiquitination for degeneration. Mechanistically, the data indicated the possible involvement of EPOR/JAK2/STAT3/SGK1/Nedd4-2 signaling in this process, and the pharmacological inhibition of the pathway markedly eliminated the stimulating effects of EPO on ENaC and Na,K-ATPase, and subsequently reversed the augmentation of AFC by EPO. Consistently, in vitro studies of alveolar epithelial cells paralleled with that EPO upregulated the expression of ENaC and Na,K-ATPase, and patch-clamp studies further demonstrated that EPO substantially strengthened sodium ion currents. Collectively, EPO could effectively promote AFC by improving ENaC and Na,K-ATPase protein expression and abundance in the membrane, dependent on inhibition of ENaC and Na,K-ATPase ubiquitination, and resulting in diminishing LPS-associated lung injuries.


Assuntos
Canais Epiteliais de Sódio , Eritropoetina , Ratos Sprague-Dawley , Síndrome do Desconforto Respiratório , Sepse , ATPase Trocadora de Sódio-Potássio , Ubiquitinação , Animais , Canais Epiteliais de Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Eritropoetina/farmacologia , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Ubiquitinação/efeitos dos fármacos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo , Masculino , Ratos , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Lipopolissacarídeos , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças
2.
Am J Reprod Immunol ; 91(2): e13820, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38332507

RESUMO

PROBLEM: Endometritis is a common disease that affects dairy cow reproduction. Autophagy plays a vital role in cellular homeostasis and modulates inflammation by regulating interactions with innate immune signaling pathways. However, little is known about the regulatory relationship between autophagy and inflammation in bovine endometrial epithelial cells (BEECs). Thus, we aimed to determine the role of autophagy in the inflammatory response in BEECs. METHODS OF STUDY: In the present study, the expression levels of proinflammatory cytokines were measured by quantitative real-time polymerase chain reaction. Changes in the nuclear factor-κB (NF-κB) pathway and autophagy were determined using immunoblotting and immunocytochemistry. The induction of autophagosome formation was visualized by transmission electron microscopy. RESULTS: Our results demonstrated that autophagy activation was inhibited in LPS-treated BEECs, while activation of the NF-κB pathway and the mRNA expression of IL-6, IL-8, and TNF-α were increased. Furthermore, blocking autophagy with the inhibitor chloroquine increased NF-κB signaling pathway activation and proinflammatory factor expression in LPS-treated BEECs. Conversely, activation of autophagy with the agonist rapamycin inhibited the NF-κB signaling pathway and downregulated proinflammatory factors. CONCLUSIONS: These data indicated that LPS-induced inflammation was related to the inhibition of autophagy in BEECs. Thus, the activation of autophagy may represent a novel therapeutic strategy for eliminating inflammation in BEECs.


Assuntos
Lipopolissacarídeos , NF-kappa B , Feminino , Bovinos , Animais , NF-kappa B/metabolismo , Inflamação/metabolismo , Células Epiteliais , Autofagia
3.
Micromachines (Basel) ; 13(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35208323

RESUMO

The advent of optogenetics provides a well-targeted tool to manipulate neurons because of its high time resolution and cell-type specificity. Recently, closed-loop neural manipulation techniques consisting of optical stimulation and electrical recording have been widely used. However, metal microelectrodes exposed to light radiation could generate photoelectric noise, thus causing loss or distortion of neural signal in recording channels. Meanwhile, the biocompatibility of neural probes remains to be improved. Here, five kinds of neural interface materials are deposited on flexible polyimide-based neural probes and illuminated with a series of blue laser pulses to study their electrochemical performance and photoelectric noises for single-unit recording. The results show that the modifications can not only improve the electrochemical performance, but can also reduce the photoelectric artifacts. In particular, the double-layer composite consisting of platinum-black and conductive polymer has the best comprehensive performance. Thus, a layer of polypeptide is deposited on the entire surface of the double-layer modified neural probes to further improve their biocompatibility. The results show that the biocompatible polypeptide coating has little effect on the electrochemical performance of the neural probe, and it may serve as a drug carrier due to its special micromorphology.

4.
Sci Rep ; 6: 26910, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27229174

RESUMO

Implantable biomedical microdevices enable the restoration of body function and improvement of health condition. As the interface between artificial machines and natural tissue, various kinds of microelectrodes with high density and tiny size were developed to undertake precise and complex medical tasks through electrical stimulation and electrophysiological recording. However, if only the electrical interaction existed between electrodes and muscle or nerve tissue without nutrition factor delivery, it would eventually lead to a significant symptom of denervation-induced skeletal muscle atrophy. In this paper, we developed a novel flexible tubular microelectrode integrated with fluidic drug delivery channel for dynamic tissue implant. First, the whole microelectrode was made of biocompatible polymers, which could avoid the drawbacks of the stiff microelectrodes that are easy to be broken and damage tissue. Moreover, the microelectrode sites were circumferentially distributed on the surface of polymer microtube in three dimensions, which would be beneficial to the spatial selectivity. Finally, the in vivo results confirmed that our implantable tubular microelectrodes were suitable for dynamic electrophysiological recording and simultaneous fluidic drug delivery, and the electrode performance was further enhanced by the conducting polymer modification.


Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Eletrodos Implantados , Implantes Experimentais , Dispositivos Lab-On-A-Chip , Músculo Esquelético/inervação , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Impedância Elétrica , Estimulação Elétrica , Feminino , Microeletrodos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/cirurgia , Células PC12 , Polímeros/química , Polímeros/farmacologia , Implantação de Prótese/métodos , Ratos , Ratos Sprague-Dawley , Xilenos/química , Xilenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA