Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473510

RESUMO

In order to address the irregularity of the welding path in aluminum alloy frame joints, this study conducted a numerical simulation of free-path welding. It focuses on the application of the TIG (tungsten inert gas) welding process in aluminum alloy welding, specifically at the intersecting line nodes of welded bicycle frames. The welding simulation was performed on a 6061-T6 aluminum alloy frame. Using a custom heat source subroutine written in Fortran language and integrated into the ABAQUS environment, a detailed numerical simulation study was conducted. The distribution of key fields during the welding process, such as temperature, equivalent stress, and post-weld deformation, were carefully analyzed. Building upon this analysis, the thin-walled TIG welding process was optimized using the response surface method, resulting in the identification of the best welding parameters: a welding current of 240 A, a welding voltage of 20 V, and a welding speed of 11 mm/s. These optimal parameters were successfully implemented in actual welding production, yielding excellent welding results in terms of forming quality. Through experimentation, it was confirmed that the welded parts were completely formed under the optimized process parameters and met the required product standards. Consequently, this research provides valuable theoretical and technical guidance for aluminum alloy bicycle frame welding.

2.
Materials (Basel) ; 16(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37445095

RESUMO

Heavy plate welding has been widely used in the construction of large projects and structures, in which the residual stress and deformation caused by the welding process are the key problems to address to reduce the stability and safety of the whole structure. Strengthening before welding is an important method to reduce the temperature gradient, control the residual stress and reduce the deformation of welds. Based on the ABAQUS software, the thermal elastoplastic finite element method (FEM) was used to simulate the welding thermal cycle, residual stress and deformation of low-alloy, high-strength steel joints. Based on the finite element simulation, the influences of flame heating and ceramic heating on the temperature field, residual stress distribution and deformation of a Q345C steel butt-welded joint were studied. The results showed that the thermal cycle of the ceramic sheet before welding had little influence on the whole weldment, but had great influence on the residual stress of the weldment. The results show that the maximum temperature and residual stress of the welded parts are obviously weakened under the heating of ceramic pieces, and the residual stress of the selected feature points is reduced by 5.88%, and the maximum temperature of the thermal cycle curve is reduced by 22.67%. At the same time, it was concluded that the weld shapes of the two were basically the same, but the weld seams heated by ceramic pieces had a better weld quality and microstructures through comparing the macro- and micro-structures between the welded parts heated by ceramic pieces and the simulated weld. Heating before welding, therefore, is an effective method to obtain a high weld quality with less residual stress and deformation.

3.
Materials (Basel) ; 15(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36499845

RESUMO

The hot stamping technology of aluminum alloy is of great significance for realizing the light weight of the automobile body, and the proper process parameters are important conditions to obtain excellent aluminum alloy parts. In this paper, the thermal deformation behavior of 6016 aluminum alloy at a high temperature is experimentally studied to provide a theoretical basis for a finite element model. With the help of blank stamping finite element software, a numerical model of a 6016 aluminum alloy automobile windshield beam during hot stamping was established. The finite element model was verified by a forming experiment. Then, the effect of the process parameters, including blank holder force, die gap, forming temperature, friction coefficient, and stamping speed on aluminum alloy formability were investigated using Taguchi design, grey relational analysis (GRA), and analysis of variance (ANOVA). Stamping tests were arranged at temperatures between 480 and 570 °C, blank holder force between 20 and 50 kN, stamping speed between 50 and 200 mm/s, die gap between 1.05 t and 1.20 t (t is the thickness of the sheet), and friction coefficient between 0.15 and 0.60. It was found that the significant factors affecting the forming quality of the hot-stamped parts were blank holder force and stamping speed, with influence significance of 28.64% and 34.09%, respectively. The optimal parameters for hot stamping of the automobile windshield beam by the above analysis are that the die gap is 1.05 t, the blank temperature is 540 °C, the coefficient of friction is 0.15, stamping speed is 200 mm/s, and blank holder force is 50 kN. The optimized maximum thickening rate is 4.87% and the maximum thinning rate is 9.00%. The optimization method used in this paper and the results of the process parameter optimization provide reference values for the optimization of hot stamping forming.

4.
Materials (Basel) ; 15(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36143814

RESUMO

Low-carbon steel pipelines are frequently used as transport pipelines for various media. As the pipeline transport industry continues to develop in extreme directions, such as high efficiency, long life, and large pipe diameters, the issue of pipeline reliability is becoming increasingly prominent. This study selected Q235 steel, a typical material for low-carbon steel pipelines, as the research object. In accordance with the pipeline service environment and the accelerated corrosion environment test spectrum, cyclic salt spray accelerated corrosion tests that simulated the effects of the marine atmosphere were designed and implemented. Corrosion properties, such as corrosion weight loss, morphology, and product composition of samples with different cycles, were characterized through appearance inspection, scanning electron microscopy analysis, and energy spectrum analysis. The corrosion behavior and mechanism of Q235 low-carbon steel in the enhanced corrosion environment were studied, and the corrosion weight loss kinetics of Q235 steel was verified to conform to the power function law. During the corrosion process, the passivation film on the surface of the low-carbon steel and the dense and stable α-FeOOH layer formed after the passivation film was peeled off played a role in corrosion resistance. The passivation effect, service life, and service limit of Q235 steel were studied and determined, and an evaluation model for quick evaluation of the corrosion life of Q235 low-carbon steel was established. This work provides technical support to improve the life and reliability of low-carbon steel pipelines. It also offers a theoretical basis for further research on the similitude and relevance of cyclic salt spray accelerated corrosion testing.

5.
Materials (Basel) ; 16(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614662

RESUMO

Micro-liquid floated gyroscopes are widely used in nuclear submarines, intercontinental missiles, and strategic bombers. The machining accuracy of micro-ball sockets determined the motion accuracy of the rotor. However, it was not easily fabricated by micro-cutting because of the excellent physical and chemical properties of beryllium copper alloy. Here, we presented a linear compensation of tool electrode and a proportional variable thickness method for milling micro-ball sockets in C17200 beryllium copper alloy by micro-electrical discharge machining. The machining parameters were systematically investigated and optimized to achieve high-precision micro-ball sockets when the k value was 0.98 and the initial layer thickness was 0.024 mm. Our method provided a new way to fabricate micro-ball sockets in C17200 with high efficiency for micro-liquid floated gyroscopes.

6.
Materials (Basel) ; 14(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34639883

RESUMO

The stress strain curve of 7075 aluminum alloy in the temperature range of 310 °C to 410 °C was obtained by Gleeble-3800. By Nakazima test, the isothermal thermoforming limit diagrams of 7075 aluminum alloy at different deformation temperatures and stamping speeds were acquired. Moreover, the parameters of automotive S-rail hot stamping process were optimized by GA-BP neural network. The results show that the forming limit curve of 7075 aluminum alloy increases as the deformation temperature and stamping speed increase. The predicted optimal parameters for hot stamping of automotive S-rails by GA-BP neural network are: stamping speed is 50 mm/s, friction coefficient between die and blank is 0.1, and blank holder force is 5 kN. The maximum thinning rate at this process parameter is 9.37%, which provided a reference for 7075 aluminum alloy automotive S-rail hot stamping.

7.
Materials (Basel) ; 12(12)2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212810

RESUMO

The Gleeble-1500D thermal simulation test machine was used to conduct the isothermal compression test on 21-4N at the strain rate ( ε ˙ ) of 0.01-10 s-1, the deformation temperature (T) of 1273-1453 K and the maximum deformation is 0.916. The data of the stress-strain (σ-ε) were obtained. Based on the σ-ε data, the Johnson-Cook (J-C), modified J-C, Arrhenius and Back-Propagation Artificial Neural Network (BP-ANN) models were established. The accuracy of four models were verified, analyzed and compared. The results show that J-C model has a higher accuracy only under reference deformation conditions. When the deformation condition changes greatly, the accuracy of J-C model is significantly reduced. The coupling effect of T and ε ˙ of modified J-C model is considered, and the prediction accuracy is greatly improved The Arrhenius model introduces Zener-Hollomon (Z) to represent the coupling effect of T and ε ˙ , it has a fairly high prediction accuracy. And it can predict flow stress (σ) accurately at different conditions. The accuracy of BP-ANN model is the highest, but its learning rate is low, the learning and memory are unstable. It has no memory for the weights and thresholds of the completed training. So, there are certain limitations of it in use. Finally, a Finite Element Method (FEM) of the isothermal compression experiment for four models were established, and the distribution of the equivalent stress field, equivalent strain field and temperature field with the deformation degree of 60% were obtained.

8.
Materials (Basel) ; 12(1)2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30591698

RESUMO

The hot deformation behavior of 21-4N heat-resistant steel was studied by hot compression test in a deformation temperature range of 1000⁻1180 °C, a strain rate range of 0.01⁻10 s-1 and a deformation degree of 60%, and the stress-strain curves were obtained. The functional relationship between flow stress and process parameters (deformation degree, deformation temperature, strain rate, etc.) of 21-4N heat-resistant steel during hot deformation was explored, the constitutive equation of peak stress was established, and its accuracy was verified. Based on the dynamic material model, the energy dissipation maps and destabilization maps of 21-4N heat-resistant steel were established at strains of 0.2, 0.4 and 0.6, and processing maps were obtained by their superposition. Within the deformation temperature range of 1060~1120°C and a strain rate range of 0.01⁻0.1 s-1, there is a stable domain with the peak efficiency of about 0.5. The best hot working parameters (strain rate and deformation temperature) of 21-4N heat-resistant steel are determined by the stable and instable domain in the processing maps, which are in the deformation temperature range of 1120⁻1180 °C and the strain rate range of 0.01⁻10 s-1.

9.
Anal Chim Acta ; 827: 22-7, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24832990

RESUMO

Metabolic syndrome (MetS) is a constellation of the most dangerous heart attack risk factors: diabetes and raised fasting plasma glucose, abdominal obesity, high cholesterol and high blood pressure. Analysis and representation of the variances of metabolic profiles is urgently needed for early diagnosis and treatment of MetS. In current study, we proposed a metabolomics approach for analyzing MetS based on GC-MS profiling and random forest models. The serum samples from healthy controls and MetS patients were characterized by GC-MS. Then, random forest (RF) models were used to visually discriminate the serum changes in MetS based on these GC-MS profiles. Simultaneously, some informative metabolites or potential biomarkers were successfully discovered by means of variable importance ranking in random forest models. The metabolites such as 2-hydroxybutyric acid, inositol and d-glucose, were defined as potential biomarkers to diagnose the MetS. These results obtained by proposed method showed that the combining GC-MS profiling with random forest models was a useful approach to analyze metabolites variances and further screen the potential biomarkers for MetS diagnosis.


Assuntos
Análise Química do Sangue/métodos , Cromatografia Gasosa-Espectrometria de Massas , Síndrome Metabólica/sangue , Síndrome Metabólica/metabolismo , Metabolômica/métodos , Modelos Teóricos , Adulto , Idoso , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA