Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
1.
Mol Med Rep ; 29(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38577930

RESUMO

Emerging scientific evidence has suggested that the long non­coding (lnc)RNA differentiation antagonizing non­protein coding RNA (DANCR) serves a significant role in human tumorigenesis and cancer progression; however, the precise mechanism of its function in breast cancer remains to be fully understood. Therefore, the objective of the present study was to manipulate DANCR expression in MCF7 and MDA­MB­231 cells using lentiviral vectors to knock down or overexpress DANCR. This manipulation, alongside the analysis of bioinformatics data, was performed to investigate the potential mechanism underlying the role of DANCR in cancer. The mRNA and/or protein expression levels of DANCR, miR­34c­5p and E2F transcription factor 1 (E2F1) were assessed using reverse transcription­quantitative PCR and western blotting, respectively. The interactions between these molecules were validated using chromatin immunoprecipitation and dual­luciferase reporter assays. Additionally, fluorescence in situ hybridization was used to confirm the subcellular localization of DANCR. Cell proliferation, migration and invasion were determined using 5­ethynyl­2'­deoxyuridine, wound healing and Transwell assays, respectively. The results of the present study demonstrated that DANCR had a regulatory role as a competing endogenous RNA and upregulated the expression of E2F1 by sequestering miR­34c­5p in breast cancer cells. Furthermore, E2F1 promoted DANCR transcription by binding to its promoter in breast cancer cells. Notably, the DANCR/miR­34c­5p/E2F1 feedback loop enhanced cell proliferation, migration and invasion in breast cancer cells. Thus, these findings suggested that targeting DANCR may potentially provide a promising future therapeutic strategy for breast cancer treatment.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Mama/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Retroalimentação , Hibridização in Situ Fluorescente , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo
2.
Chin J Integr Med ; 30(1): 25-33, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37750986

RESUMO

OBJECTIVE: To determine whether monotropein has an anticancer effect and explore its potential mechanisms against colorectal cancer (CRC) through network pharmacology and molecular docking combined with experimental verification. METHODS: Network pharmacology and molecular docking were used to predict potential targets of monotropein against CRC. Cell counting kit assay, plate monoclonal assay and microscopic observation were used to investigate the antiproliferative effects of monotropein on CRC cells HCT116, HT29 and LoVo. Flow cytometry and scratch assay were used to analyze apoptosis and cell cycle, as well as cell migration, respectively in HCT116, HT29, and LoVo cells. Western blotting was used to detect the expression of proteins related to apoptosis, cell cycle, and cell migration, and the expression of proteins key to the Akt pathway. RESULTS: The Gene Ontology and Reactome enrichment analyses indicated that the anticancer potential of monotropein against CRC might be involved in multiple cancer-related signaling pathways. Among these pathways, RAC-beta serine/threonine-protein kinase (Akt1, Akt2), cyclin-dependent kinase 6 (CDK6), matrix metalloproteinase-9 (MMP9), epidermal growth factor receptor (EGFR), cell division control protein 42 homolog (CDC42) were shown as the potential anticancer targets of monotropein against CRC. Molecular docking suggested that monotropein may interact with the 6 targets (Akt1, Akt2, CDK6, MMP9, EGFR, CDC42). Subsequently, cell activity of HCT116, HT29 and LoVo cell lines were significantly suppressed by monotropein (P<0.05). Furthermore, our research revealed that monotropein induced cell apoptosis by inhibiting Bcl-2 and increasing Bax, induced G1-S cycle arrest in colorectal cancer by decreasing the expressions of CyclinD1, CDK4 and CDK6, inhibited cell migration by suppressing the expressions of CDC42 and MMP9 (P<0.05), and might play an anticancer role through Akt signaling pathway. CONCLUSION: Monotropein exerts its antitumor effects primarily by arresting the cell cycle, causing cell apoptosis, and inhibiting cell migration. This indicates a high potential for developing novel medication for treating CRC.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células , Metaloproteinase 9 da Matriz , Simulação de Acoplamento Molecular , Ciclo Celular , Receptores ErbB , Apoptose , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Linhagem Celular Tumoral
3.
J Trauma Acute Care Surg ; 96(4): 596-602, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38079274

RESUMO

BACKGROUND: Tranexamic acid (TXA) is associated with lower mortality and transfusion requirements in trauma patients, but its role in thrombotic complications associated with vascular repairs remains unclear. We investigated whether TXA increases the risk of thrombosis-related technical failure (TRTF) in major vascular injuries (MVI). METHODS: The PROspective Observational Vascular Injury Treatment (PROOVIT) registry was queried from 2013 to 2022 for MVI repaired with an open or endovascular intervention. The relationship between TXA administration and TRTF was examined. RESULTS: The TXA group (n = 297) had higher rates of hypotension at admission (33.6% vs. 11.5%, p < 0.001), need for continuous vasopressors (41.4% vs. 18.4%, p < 0.001), and packed red blood cell transfusion (3.2 vs. 2.0 units, p < 0.001) during the first 24 hours compared with the non-TXA group (n = 1941), although demographics, injury pattern, and interventions were similar. Cryoprecipitate (9.1% vs. 2%, p < 0.001), and anticoagulant administration during the intervention (32.7% vs. 43.8%, p < 0.001) were higher in the TXA group; there was no difference in the rate of factor VII use between groups (1% vs. 0.7%, p = 0.485). Thrombosis-related technical failure was not different between the groups (6.3% vs. 3.8 p = 0.141) while the rate of immediate need for reoperation (10.1% vs. 5.7%, p = 0.006) and overall reoperation (11.4% vs. 7%, p = 0.009) was significantly higher in the TXA group on univariate analysis. There was no significant association between TXA and a higher rate of immediate need for reintervention (odds ratio [OR], 1.19; 95% confidence interval [CI], 0.75-1.88; p = 0.465), overall reoperation rate (OR, 1.33; 95% CI, 0.82-2.17; p = 0.249) and thrombotic events in a repaired vessel (OR, 1.07; 95% CI, 0.60-1.92; p = 0.806) after adjusting for type of injury, vasopressor infusions, blood product and anticoagulant administration, and hemodynamics. CONCLUSION: Tranexamic acid is not associated with a higher risk of thrombosis-related technical failure in traumatic injuries requiring major vascular repairs. Further prospective studies to examine dose-dependent or time-dependent associations between TXA and thrombotic events in MVIs are needed. LEVEL OF EVIDENCE: Therapeutic/Care Management; Level IV.


Assuntos
Antifibrinolíticos , Trombose , Ácido Tranexâmico , Lesões do Sistema Vascular , Humanos , Ácido Tranexâmico/uso terapêutico , Lesões do Sistema Vascular/cirurgia , Antifibrinolíticos/uso terapêutico , Estudos Prospectivos , Trombose/etiologia , Anticoagulantes , Perda Sanguínea Cirúrgica/prevenção & controle
4.
Adv Healthc Mater ; 12(21): e2301730, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37400071

RESUMO

Peptides are being increasingly important for subcellular targeted cancer treatment to improve specificity and reverse multidrug resistance. However, there has been yet any report on targeting plasma membrane (PM) through self-assembling peptides. A simple synthetic peptidic molecule (tF4) is developed. It is revealed that tF4 is carboxyl esterase-resistant and self-assembles into vesical nanostructures. Importantly, tF4 assemblies interact with PM through orthogonal hydrogen bonding and hydrophobic interaction to regulate cancer cellular functions. Mechanistically, tF4 assemblies induce stress fiber formation, cytoskeleton reconstruction, and death receptor 4/5 (DR4/5) expression in cancer cells. DR4/5 triggers extrinsic caspase-8 signaling cascade, resulting in cell death. The results provide a new strategy for developing enzyme-resistant and PM-targeting peptidic molecules against cancer.


Assuntos
Nanoestruturas , Neoplasias , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Peptídeos/química , Morte Celular , Nanoestruturas/química , Apoptose , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
5.
Adv Sci (Weinh) ; 10(27): e2300470, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37505480

RESUMO

Myocardial infarction (MI) causes excessive damage to the myocardium, including the epicardium. However, whether pluripotent stem cell-derived epicardial cells (EPs) can be a therapeutic approach for infarcted hearts remains unclear. Here, the authors report that intramyocardial injection of human embryonic stem cell-derived EPs (hEPs) at the acute phase of MI ameliorates functional worsening and scar formation in mouse hearts, concomitantly with enhanced cardiomyocyte survival, angiogenesis, and lymphangiogenesis. Mechanistically, hEPs suppress MI-induced infiltration and cytokine-release of inflammatory cells and promote reparative macrophage polarization. These effects are blocked by a type I interferon (IFN-I) receptor agonist RO8191. Moreover, intelectin 1 (ITLN1), abundantly secreted by hEPs, interacts with IFN-ß and mimics the effects of hEP-conditioned medium in suppression of IFN-ß-stimulated responses in macrophages and promotion of reparative macrophage polarization, whereas ITLN1 downregulation in hEPs cancels beneficial effects of hEPs in anti-inflammation, IFN-I response inhibition, and cardiac repair. Further, similar beneficial effects of hEPs are observed in a clinically relevant porcine model of reperfused MI, with no increases in the risk of hepatic, renal, and cardiac toxicity. Collectively, this study reveals hEPs as an inflammatory modulator in promoting infarct healing via a paracrine mechanism and provides a new therapeutic approach for infarcted hearts.


Assuntos
Células-Tronco Embrionárias Humanas , Infarto do Miocárdio , Suínos , Camundongos , Humanos , Animais , Miocárdio , Miócitos Cardíacos , Infarto do Miocárdio/tratamento farmacológico , Macrófagos
6.
Am Surg ; 89(10): 4135-4141, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37259527

RESUMO

BACKGROUND: Since 2016, the Choosing Wisely campaign has recommended against routine axillary surgery in elderly patients with early stage, hormone receptor positive (ER+) breast cancer. The objective was to evaluate factors associated with axillary surgery in breast cancer patients meeting criteria for sentinel lymph node biopsy (SLNB) omission and identify potential disparities. METHODS: Female patients age ≥70 years with cT1-2N0M0, ER+, HER2-negative breast cancer diagnosed after publication of the Choosing Wisely recommendations, between 2016 and 2019, were identified from the Surveillance, Epidemiology, and End Results (SEER) database. Patient demographics and tumor characteristics associated with axillary surgery were analyzed. RESULTS: Of the 31 756 patients meeting omission criteria, 25 771 (81.2%) underwent axillary surgery. Hispanic ethnicity, median household income between $35,000 and $70,000, treatment in rural areas, poor differentiation, lobular and mixed lobular with ductal histology, T2 tumors, radiation therapy, and systemic therapy were factors associated with receiving axillary surgery on multivariable analysis. In the axillary surgery cohort, a median of 2 (IQR = 2) nodes were examined and 529 (2.1%) patients were found to have 1 or more positive lymph nodes. DISCUSSION: Among elderly patients meeting Choosing Wisely criteria for SLNB omission, particular racial, ethnic, socioeconomic, and geographic populations may be at increased risk for potential over treatment. Identification of these factors provides specific opportunities for education and implementation of de-escalation of unnecessary procedures.


Assuntos
Neoplasias da Mama , Biópsia de Linfonodo Sentinela , Humanos , Feminino , Idoso , Metástase Linfática/patologia , Neoplasias da Mama/cirurgia , Neoplasias da Mama/patologia , Mastectomia , Fatores de Risco , Axila , Excisão de Linfonodo , Estadiamento de Neoplasias , Linfonodos/patologia
7.
Orthop Surg ; 15(6): 1670-1676, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37143443

RESUMO

OBJECTIVE: Although total joint replacement (TJR) procedures are efficacious, perioperative high-dose factors replacement therapy (FRT) to avoid catastrophic bleeding represents a significant hurdle, particularly for patients with multiple joint affection. Double simultaneous bilateral TJRs were reported as safe and cost-effective. However, little is known about multiple TJRs. The feasibility and effects remain debatable. Surgeons need to weigh the high cost of FRT against safety. Accordingly, we aimed to evaluate the clinical outcomes and cost-effectiveness of single-anesthetic multiple-joint procedures of lower limbs in end-stage hemophilic arthropathy. METHODS: Our retrospective cohort study retrieved data from an inpatient database of patients with hemophilia who underwent total knee arthroplasty (TKA), total hip arthroplasty (THA), and/or ankle arthrodesis from January 2000 to April 2016. Complications, hospital stays, transfusion, doses of clotting factor, medical costs, range of motion (ROM), Harris hip scores (HHSs) and Hospital for special surgery knee scores (HSSs) were recorded. A P value < 0.05 was considered significant. RESULTS: A total number of 81 patients were included in this study, among which 89 TKAs and 52 THAs were performed. Compared to the single TJR group, the simultaneous multiple TJR group showed a significantly higher rate of blood transfusions (P < 0.05). But no significant differences were found in the length of hospital stays, factor consumption, hospitalization costs excluding prosthesis expenses, and total complication rates. Finally, similar postoperative ROM, HHS, and HSS were witnessed in two groups (P value > 0.05). CONCLUSION: Our data indicated that simultaneous multiple TJRs are a safe and cost-effective choice for treating hemophilic patients with multiple HA-affected lower limb joints.


Assuntos
Anestésicos , Artrite , Artroplastia de Quadril , Humanos , Estudos Retrospectivos , Análise Custo-Benefício , Seguimentos , Resultado do Tratamento
8.
J Immunol ; 210(12): 1913-1924, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37133343

RESUMO

Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is an ultra-rare combined primary immunodeficiency disease caused by heterozygous gain-of-function mutations in the chemokine receptor CXCR4. WHIM patients typically present with recurrent acute infections associated with myelokathexis (severe neutropenia due to bone marrow retention of mature neutrophils). Severe lymphopenia is also common, but the only associated chronic opportunistic pathogen is human papillomavirus and mechanisms are not clearly defined. In this study, we show that WHIM mutations cause more severe CD8 than CD4 lymphopenia in WHIM patients and WHIM model mice. Mechanistic studies in mice revealed selective and WHIM allele dose-dependent accumulation of mature CD8 single-positive cells in thymus in a cell-intrinsic manner due to prolonged intrathymic residence, associated with increased CD8 single-positive thymocyte chemotactic responses in vitro toward the CXCR4 ligand CXCL12. In addition, mature WHIM CD8+ T cells preferentially home to and are retained in the bone marrow in mice in a cell-intrinsic manner. Administration of the specific CXCR4 antagonist AMD3100 (plerixafor) in mice rapidly and transiently corrected T cell lymphopenia and the CD4/CD8 ratio. After lymphocytic choriomeningitis virus infection, we found no difference in memory CD8+ T cell differentiation or viral load between wild-type and WHIM model mice. Thus, lymphopenia in WHIM syndrome may involve severe CXCR4-dependent CD8+ T cell deficiency resulting in part from sequestration in the primary lymphoid organs, thymus, and bone marrow.


Assuntos
Agamaglobulinemia , Compostos Heterocíclicos , Síndromes de Imunodeficiência , Linfopenia , Neutropenia , Humanos , Animais , Camundongos , Síndromes de Imunodeficiência/genética , Mobilização de Células-Tronco Hematopoéticas/efeitos adversos , Agamaglobulinemia/complicações , Agamaglobulinemia/genética , Neutropenia/genética , Linfócitos T CD8-Positivos , Receptores CXCR4/genética
9.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 45(2): 93-101, Mar.-Apr. 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1439557

RESUMO

Introduction: Seed-based analysis has shown that transcutaneous auricular vagus nerve stimulation (taVNS) can modulate the dysfunctional brain network in patients with major depressive disorder (MDD). However, the voxel-based neuropsychological mechanism of taVNS on patients with first-episode MDD is poorly understood. The objective of this study was to assess the effects of an 8-week course of taVNS on patients with first-episode MDD. Methods: Twenty-two patients with first-episode MDD accepted an 8-week course of taVNS treatment. Resting-state functional magnetic resonance imaging (rs-fMRI) scans were performed before and after treatment. Voxel-based analyses were performed to characterize spontaneous brain activity. Healthy controls (n=23) were recruited to minimize test-retest effects. Analysis of covariance (ANCOVA) was performed to ascertain treatment-related changes. Then, correlations between changes in brain activity and the Hamilton Depression Rating Scale (HAM-D)/Hamilton Anxiety Scale (HAM-A) remission rate were estimated. Results: Significant group-by-time interactions on voxel-based analyses were observed in the inferior ventral striatum (VSi) and precuneus. Post-hoc analyses showed that taVNS inhibited higher brain activity in the VSi, while upregulating it in the precuneus. Functional connectivity (FC) between the VSi and precuneus decreased. Positive correlations were found between the HAM-D remission rate and changes in brain activity in the VSi. Conclusion: taVNS reduced the FC between VSi and precuneus by normalizing the abnormal spontaneous brain activity of VSi in first-episode MDD patients.

10.
Mil Med Res ; 10(1): 15, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36949519

RESUMO

BACKGROUND: Reconstruction of damaged tissues requires both surface hemostasis and tissue bridging. Tissues with damage resulting from physical trauma or surgical treatments may have arbitrary surface topographies, making tissue bridging challenging. METHODS: This study proposes a tissue adhesive in the form of adhesive cryogel particles (ACPs) made from chitosan, acrylic acid, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The adhesion performance was examined by the 180-degree peel test to a collection of tissues including porcine heart, intestine, liver, muscle, and stomach. Cytotoxicity of ACPs was evaluated by cell proliferation of human normal liver cells (LO2) and human intestinal epithelial cells (Caco-2). The degree of inflammation and biodegradability were examined in dorsal subcutaneous rat models. The ability of ACPs to bridge irregular tissue defects was assessed using porcine heart, liver, and kidney as the ex vivo models. Furthermore, a model of repairing liver rupture in rats and an intestinal anastomosis in rabbits were established to verify the effectiveness, biocompatibility, and applicability in clinical surgery. RESULTS: ACPs are applicable to confined and irregular tissue defects, such as deep herringbone grooves in the parenchyma organs and annular sections in the cavernous organs. ACPs formed tough adhesion between tissues [(670.9 ± 50.1) J/m2 for the heart, (607.6 ± 30.0) J/m2 for the intestine, (473.7 ± 37.0) J/m2 for the liver, (186.1 ± 13.3) J/m2 for muscle, and (579.3 ± 32.3) J/m2 for the stomach]. ACPs showed considerable cytocompatibility in vitro study, with a high level of cell viability for 3 d [(98.8 ± 1.2) % for LO2 and (98.3 ± 1.6) % for Caco-2]. It has comparable inflammation repair in a ruptured rat liver (P = 0.58 compared with suture closure), the same with intestinal anastomosis in rabbits (P = 0.40 compared with suture anastomosis). Additionally, ACPs-based intestinal anastomosis (less than 30 s) was remarkably faster than the conventional suturing process (more than 10 min). When ACPs degrade after surgery, the tissues heal across the adhesion interface. CONCLUSIONS: ACPs are promising as the adhesive for clinical operations and battlefield rescue, with the capability to bridge irregular tissue defects rapidly.


Assuntos
Adesivos , Adesivos Teciduais , Ratos , Humanos , Suínos , Coelhos , Animais , Criogéis , Células CACO-2 , Inflamação
11.
Blood ; 142(1): 23-32, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-36928087

RESUMO

WHIM syndrome is an autosomal dominant immunodeficiency disorder caused by gain-of-function mutations in chemokine receptor CXCR4 that promote severe panleukopenia because of retention of mature leukocytes in the bone marrow (BM). We previously reported that Cxcr4-haploinsufficient (Cxcr4+/o) hematopoietic stem cells (HSCs) have a strong selective advantage for durable hematopoietic reconstitution over wild-type (Cxcr4+/+) and WHIM (Cxcr4+/w) HSCs and that a patient with WHIM was spontaneously cured by chromothriptic deletion of the disease allele in an HSC, suggesting that WHIM allele inactivation through gene editing may be a safe genetic cure strategy for the disease. We have developed a 2-step preclinical protocol of autologous hematopoietic stem and progenitor cell (HSPC) transplantation to achieve this goal. First, 1 copy of Cxcr4 in HSPCs was inactivated in vitro by CRISPR/Cas9 editing with a single guide RNA (sgRNA) that does not discriminate between Cxcr4+/w and Cxcr4+/+ alleles. Then, through in vivo natural selection, WHIM allele-inactivated cells were enriched over wild-type allele-inactivated cells. The WHIM allele-inactivated HSCs retained long-term pluripotency and selective hematopoietic reconstitution advantages. To our knowledge, this is the first example of gene therapy for an autosomal dominant gain-of-function disease using a disease allele inactivation strategy in place of the less efficient disease allele repair approach.


Assuntos
Síndromes de Imunodeficiência , Verrugas , Camundongos , Animais , Alelos , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/terapia , Verrugas/genética , Verrugas/terapia , Terapia Genética , Receptores CXCR4/genética
12.
Phytomedicine ; 108: 154490, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36332386

RESUMO

BACKGROUND: Ulcerative colitis (UC) progression is driven by the activation of immune cells that release pro-inflammatory mediators to disrupt intestinal epithelial barrier integrity. This study aimed to investigate the potential protective effects of Angelica oil (AO) on the intestinal epithelial barrier in mice with UC and the underlying mechanisms. METHODS: Improvement of the disease state and protective effect of AO on the intestinal epithelial barrier were observed in mice with dextran sulphate sodium salt (DSS)-induced UC. Protein microarrays were used to screen AO-affected cytokine pools and their recruited immune cells for accumulation in the tissues. Furthermore, quantitative proteomics was applied to search for AO-acting molecules and to verify in vitro the functions of key molecules between inflammation and the intestinal mucosal barrier. RESULTS: AO significantly alleviated intestinal inflammation, reduced intestinal permeability, and retained barrier function in mice with UC. Furthermore, cytokines inhibited by AO mainly promoted monocyte and neutrophil activation or chemotaxis. Moreover, proteomic screening revealed that S100A8/A9 was a key molecule significantly regulated by AO, and its mediated TLR4/NF-κB pathway was also inhibited. Finally, we verified that AO inhibited the activation of the S100A8/A9/TLR4 signalling pathway and enhanced the expression of tight junctions (TJs) proteins using a cellular model of intestinal barrier damage induced by S100A8/A9 or macrophage-derived medium. And the enhancement of TJs in intestinal epithelial cells and the inhibition of inflammatory signalling by AO were significantly attenuated due to the application of S100A8/A9 monoclonal antibody. CONCLUSION: These results demonstrated that AO improves intestinal mucosal barrier damage in the inflammatory environment of mice with UC by inhibiting the expression of S100A8/A9 and the activation of its downstream TLR4/NF-κB signalling pathway.


Assuntos
Angelica , Colite Ulcerativa , Colite , Animais , Camundongos , Colite/induzido quimicamente , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteômica , Receptor 4 Toll-Like/metabolismo
13.
J Mater Chem B ; 10(44): 9266-9279, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36342458

RESUMO

Nanotechnology-mediated drug delivery systems suffer from insufficient retention in tumor tissues and unreliable drug release at specific target sites. Herein, we developed an epidermal growth factor receptor-targeted multifunctional micellar nanoplatform (GE11-DOX+CEL-M) by encapsulating celecoxib into polymeric micelles based on the conjugate of GE11-poly(ethylene glycol)-b-poly(trimethylene carbonate) with doxorubicin to suppress tumor growth and metastasis. The polymeric micelles maintained stable nanostructures under physiological conditions but quickly disintegrated in a weakly acidic environment, which is conducive to controlled drug release. Importantly, GE11-DOX+CEL-M micelles effectively delivered the drug combination to tumor sites and enhanced tumor cell uptake through GE11-mediated active tumor targeting. Subsequently, GE11-DOX+CEL-M micelles dissociated in response to intracellular slightly acidic microenvironmental stimuli, resulting in rapid release of celecoxib and doxorubicin to synergistically inhibit the proliferation and migration of tumor cells. Systemic administration of GE11-DOX+CEL-M micelles into mice bearing subcutaneous 4T1 tumor models resulted in higher tumor growth suppression and decreased lung metastasis of tumor cells compared with micelles without GE11 decoration or delivering only doxorubicin. Furthermore, the micelles effectively reduced the systemic toxicity of the chemotherapy drugs. This nanotherapeutic system provides a promising strategy for safe and effective cancer therapy.


Assuntos
Micelas , Neoplasias , Camundongos , Animais , Celecoxib/farmacologia , Linhagem Celular Tumoral , Doxorrubicina , Polímeros , Neoplasias/tratamento farmacológico
14.
Brain Behav Immun Health ; 26: 100523, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36267834

RESUMO

Pro-inflammatory factors may be associated with abnormalities in functional brain networks, which may be a mechanism in the pathogenesis of major depressive disorder (MDD). Electroencephalogram (EEG) microstates reflect the functioning of brain networks. However, the relationship between pro-inflammatory factors and the microstate abnormalities in patients with MDD is poorly understood. 24 MDD patients and 24 age-and sex-matched healthy controls (HC) were recruited. Montgomery-Asberg Depression Rating Scale(MADRS) were assessed. Serum (interleukin- 2(IL- 2), tumor necrosis factor-α (TNF-α) and hs-C-reactive protein (CRP)and EEG data were collected. K-means clustering was performed to characterize different microstates. For each microstate, duration, occurrence and coverage were estimated. Four microstates (e.g. A, B, C, D) were characterized, MDD group showed lower duration, occurrence and coverage of microstate B and microstate D, while higher duration of microstate A and microstate C and levels of IL-2, TNF-α, hs-CRP than HC group. The duration, occurrence and coverage of microstate D were negatively correlated with levels of pro-inflammatory factors (IL-2, TNF- α and hs- CRP) (all P < 0.05). Serum pro-inflammatory induced the abnormalities of microstate D. Together, these findings add to the understanding of the pathophysiology of MDD and point to pro-inflammatory factors contribute to EEG microstate abnormalities in patients with MDD.

15.
Front Immunol ; 13: 869207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911777

RESUMO

Acute pancreatitis (AP) is a common cause of a clinically acute abdomen. Crosstalk between acinar cells and leukocytes (especially macrophages) plays an important role in the development of AP. However, the mechanism mediating the interaction between acinar cells and macrophages is still unclear. This study was performed to explore the role of acinar cell extracellular vesicles (EVs) in the crosstalk between acinar cells and macrophages involved in the pathogenesis of AP. EVs derived from caerulein-treated acinar cells induced macrophage infiltration and aggravated pancreatitis in an AP rat model. Further research showed that acinar cell-derived EV miR-183-5p led to M1 macrophage polarization by downregulating forkhead box protein O1 (FoxO1), and a dual-luciferase reporter assay confirmed that FoxO1 was directly inhibited by miR-183-5p. In addition, acinar cell-derived EV miR-183-5p reduced macrophage phagocytosis. Acinar cell-derived EV miR-183-5p promoted the pancreatic infiltration of M1 macrophages and increased local and systemic damage in vivo. Subsequently, miR-183-5p overexpression in macrophages induced acinar cell damage and trypsin activation, thus further exacerbating the disease. In clinical samples, elevated miR-183-5p levels were detected in serum EVs and positively correlated with the severity of AP. EV miR-183-5p might play an important role in the development of AP by facilitating M1 macrophage polarization, providing a new insight into the diagnosis and targeted management of pancreatitis. Graphical abstract of the present study. In our caerulein-induced AP model, miR-183-5p was upregulated in injured acinar cells and transported by EVs to macrophages. miR-183-5p could induce M1 macrophage polarization through downregulation of FoxO1 and the release of inflammatory cytokines, which could aggravate AP-related injuries. Therefore, a vicious cycle might exist between injured ACs and M1 macrophage polarization, which is fulfilled by EV-transported miR-183-5p, leading to sustainable and progressive AP-related injuries.


Assuntos
Vesículas Extracelulares , MicroRNAs , Pancreatite , Células Acinares/metabolismo , Doença Aguda , Animais , Ceruletídeo/toxicidade , Regulação para Baixo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Pancreatite/genética , Pancreatite/metabolismo , Ratos
16.
Ying Yong Sheng Tai Xue Bao ; 33(8): 2297-2304, 2022 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-36043839

RESUMO

Oil and its pollutants, which enter environment through natural oil seepage and many human activities, have considerable impacts on birds. We summarized the research advances in how oil pollutants influence birds and the cleaning technology of polluted birds and their habitats. The toxicity and destruction to feather structure are the major impacts of oil pollution on birds. Oil pollution can lead to birds' death, and also produce many chronic harms, including causing hemolytic anemia, reducing their immunity, disrupting thermal insulation and waterproo-fing performance of feather. It is an important way to reduce the impacts of oil pollution on birds by timely cleaning up the oil in bird habitats as well as carrying out the clean and repair work to the polluted birds. As a big oil-consuming country, China has been left behind by foreign countries in the studies of the effects of oil pollution on birds. More attention should be paid on the short-term and long-term impacts of oil pollution on birds and the cleaning and remediation technologies of the polluted birds and their habitats.


Assuntos
Poluentes Ambientais , Poluição por Petróleo , Poluentes Químicos da Água , Animais , Aves , Ecossistema , Poluentes Ambientais/toxicidade , Humanos , Poluentes Químicos da Água/análise
17.
Am J Cancer Res ; 12(6): 2711-2720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812041

RESUMO

Recently, the albumin-bilirubin (ALBI) score, a continuous index consisting of only albumin and bilirubin, has been developed for objectively assessing liver function in patients with hepatocellular carcinoma (HCC). However, the ALBI score was arbitrarily categorized into three ALBI grades based on two artificially predetermined cutoff points with no explanation and statistical grounds, causing a considerable loss of discriminatory ability. This study aims to propose a modified ALBI (mALBI) grade for offering a detailed evaluation of hepatic reserve and specify its role during clinical practice in the HCC setting. The study population comprised 3540 HCC patients treated with mainstream therapies including hepatectomy (n=2056), thermal ablation (n=550), and transcatheter arterial chemoembolization (n=934) from 2002 to 2017. The ALBI score was stratified into four mALBI grades through a recently proposed statistical method aiming to select the optimal cutoff points of a continuous predictive variable by maximizing the discriminative ability in a multivariable Cox regression model. The mALBI grade had an overall better discriminatory ability than the ALBI grade in predicting overall survival through Harrell's C-index (0.614 vs. 0.598, P<0.001). Both visual inspections of Kaplan-Meier curves and calculation of hazard ratios displayed a more subtle evaluation of liver function using the mALBI grade. Moreover, the newly identified cut-point (ALBI score = -2.29) between the mALBI grade 2a and 2b was much closer to a 30% retention rate of indocyanine green at 15 minutes, an indicator for the performance of a subsegmentectomy. The newly proposed mALBI grade provides a more subtle assessment of liver function to guide clinical decision-making and predicts the prognosis of HCC patients more accurately than the original ALBI grade.

18.
Front Endocrinol (Lausanne) ; 13: 906310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832425

RESUMO

Emerging evidence is examining the precise role of intestinal microbiota in the pathogenesis of type 2 diabetes. The aim of this study was to investigate the association of intestinal microbiota and microbiota-generated metabolites with glucose metabolism systematically in a large cross-sectional study in China. 1160 subjects were divided into three groups based on their glucose level: normal glucose group (n=504), prediabetes group (n=394), and diabetes group (n=262). Plasma concentrations of TMAO, choline, betaine, and carnitine were measured. Intestinal microbiota was measured in a subgroup of 161 controls, 144 prediabetes and 56 diabetes by using metagenomics sequencing. We identified that plasma choline [Per SD of log-transformed change: odds ratio 1.36 (95 confidence interval 1.16, 1.58)] was positively, while betaine [0.77 (0.66, 0.89)] was negatively associated with diabetes, independently of TMAO. Individuals with diabetes could be accurately distinguished from controls by integrating data on choline, and certain microbiota species, as well as traditional risk factors (AUC=0.971). KOs associated with the carbohydrate metabolism pathway were enhanced in individuals with high choline level. The functional shift in the carbohydrate metabolism pathway in high choline group was driven by species Ruminococcus lactaris, Coprococcus catus and Prevotella copri. We demonstrated the potential ability for classifying diabetic population by choline and specific species, and provided a novel insight of choline metabolism linking the microbiota to impaired glucose metabolism and diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Estado Pré-Diabético , Adulto , Betaína/metabolismo , Colina/metabolismo , Estudos Transversais , Microbioma Gastrointestinal/genética , Glucose , Humanos , Aprendizado de Máquina , Metagenômica , Metilaminas/metabolismo
19.
J Oncol ; 2022: 3819564, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498543

RESUMO

Background: Whether more tumor numbers detected in surgery compared to preoperative image affecting survival of colorectal liver metastases (CRLM) patients after hepatectomy combined with microwave ablation (MWA) remains unclear. Methods: From 2013 to 2018, 85 CRLM patients who underwent hepatectomy combined with MWA were retrospectively assessed. Compared to the tumor numbers in preoperative image, patients with equal intraoperative tumor numbers were defined as the equal number group (n = 45); patients detected more tumor numbers in surgery were defined as the more number group (n = 40). Clinicopathological factors and prognosis were compared between two groups. Results: Compared to the equal number group, the more number group was characterized by more lymphatic metastasis, synchronous metastasis of liver lesion, and tumor numbers over 5 (all P < 0.05). Median survival time was 46.7 months and 26.8 months in the equal and more number group. Significantly worse overall survival (OS) was found in more number group to the equal number group (P = 0.027). In Cox analysis, more tumor number than image and high level of carbohydrate antigen 19-9 (CA19-9) were poor prognostic factors for OS. Conclusion: In patients receiving hepatectomy combined with MWA, detecting more liver metastases in surgery than preoperative image indicates poor long-term survival. These patients were characterized by more lymphatic metastasis, synchronous metastasis of liver lesion, and tumor numbers over 5. Intensive follow-up to detect early recurrence and potent postoperative therapy to improve survival may be justified in patients detected more tumor numbers in surgery with a high CA19-9 level.

20.
Clin Transl Med ; 12(4): e691, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35474446

RESUMO

BACKGROUND: Gastric carcinoma (GC) is one of the most deadly diseases due to tumour metastasis and resistance to therapy. Understanding the molecular mechanism of tumour progression and drug resistance will improve therapeutic efficacy and develop novel intervention strategies. METHODS: Differentially expressed long non-coding RNAs (lncRNAs) in clinical specimens were identified by LncRNA microarrays and validated in different clinical cohorts by quantitative real-time polymerase chain reaction (qRT-PCR), in situ hybridisation and bioinformatics analysis. Biological functions of lncRNA were investigated by using cell proliferation assays, migration assays, xenograft tumour models and bioinformatics analysis. Effects of lncSLCO1C1 on GC cell survival were assessed by comet assays and immunofluorescence assays. Underlying molecular mechanisms were further explored by using a number of technologies including RNA pull-down, mass spectrometry analysis, RNA immunoprecipitation, co-immunoprecipitation, miRNA sequencing, luciferase reporter assays and molecular modelling. RESULTS: LncSLCO1C1 was highly upregulated in GC tissue samples and associated with GC patients' poor overall survival. Overexpression of lncSLCO1C1 promoted proliferation and migration, whereas decreased lncSLCO1C1 expression produced the opposite effects. lncSLCO1C1 also mediated tumour resistance to chemotherapy with oxaliplatin by reducing DNA damage and increasing cell proliferation. Despite sequence overlapping between lncSLCO1C1 and PDE3A, alternations of PDE3A expression had no effect on the GC cell progression, indicating that lncSLCO1C1, not PDE3A, related with the progression of GC cells. Mechanistically, lncSLCO1C1 serves as a scaffold for the structure-specific recognition protein 1 (SSRP1)/H2A/H2B complex and regulates the function of SSRP1 in reducing DNA damage. Meanwhile, lncSLCO1C1 functions as a sponge to adsorb miR-204-5p and miR-211-5p that target SSRP1 mRNA, and thus increases SSRP1 expression. Patients with high expressions of both lncSLCO1C1 and SSRP1 have poor overall survival, highlighting the role of lncSLCO1C1 in GC progression. CONCLUSIONS: LncSLCO1C1 promotes GC progression by enhancing cell growth and preventing DNA damage via interacting and scaffolding the SSRP1/H2A/H2b complex and absorbing both miR-211-5p and miR-204-5p to increase SSRP1 expression.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Transportadores de Ânions Orgânicos , Oxaliplatina/farmacologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA