Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Chem Sci ; 15(18): 6752-6762, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38725496

RESUMO

Cancer cells have a strategically optimized metabolism and tumor microenvironment for rapid proliferation and growth. Increasing research efforts have been focused on developing therapeutic agents that specifically target the metabolism of cancer cells. In this work, we prepared 1-methyl-4-phenylpyridinium-functionalized Ir(iii) complexes that selectively localize in the mitochondria and generate singlet oxygen and superoxide anion radicals upon two-photon irradiation. The generation of this oxidative stress leads to the disruption of the mitochondrial respiratory chain and therefore the disturbance of mitochondrial oxidative phosphorylation and glycolysis metabolisms, triggering cell death by combining immunogenic cell death and ferritinophagy. To the best of our knowledge, this latter is reported for the first time in the context of photodynamic therapy (PDT). To provide cancer selectivity, the best compound of this work was encapsulated within exosomes to form tumor-targeted nanoparticles. Treatment of the primary tumor of mice with two-photon irradiation (720 nm) 24 h after injection of the nanoparticles in the tail vein stops the primary tumor progression and almost completely inhibits the growth of distant tumors that were not irradiated. Our compound is a promising photosensitizer that efficiently disrupts the mitochondrial respiratory chain and induces ferritinophagy-mediated long-term immunotherapy.

2.
Angew Chem Int Ed Engl ; : e202405679, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771671

RESUMO

An optimal cancer chemotherapy regimen should effectively address the drug resistance of tumors while eliciting antitumor-immune responses. Research has shown that non-apoptotic cell death, such as pyroptosis and ferroptosis, can enhance the immune response. Despite this, there has been limited investigation and reporting on the mechanisms of oncosis and its correlation with immune response. Herein, we designed and synthesized a Ru(II) complex that targeted the nucleus and mitochondria to induce cell oncosis. Briefly, the Ru(II) complex disrupts the nucleus and mitochondria DNA, which active polyADP-ribose polymerase 1, accompanied by ATP consumption and porimin activation. Concurrently, mitochondrial damage and endoplasmic reticulum stress result in the release of Ca2+ ions and increased expression of Calpain 1. Subsequently, specific pore proteins porimin and Calpain 1 promote cristae destruction or vacuolation, ultimately leading to cell membrane rupture. The analysis of RNA sequencing demonstrates that Ru(II) complex can initiate the oncosis-associated pathway and activate both innate and adaptive immunity. In vivo experiments have confirmed that oncosis facilitates the maturation of dendritic cells and the awakening of adaptive cytotoxic T lymphocytes but also induces the polarization of tumor-associated macrophages (TAMs) towards an M1 phenotype and activates the innate immune response of TAMs.

3.
J Med Chem ; 67(10): 8372-8382, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38745549

RESUMO

Using photodynamic therapy (PDT) to trigger nonconventional cell death pathways has provided a new scheme for highly efficient and non-side effects to drug-resistant cancer therapies. Nonetheless, the unclear targets of available photosensitizers leave the manner of PDT-induced tumor cell death relatively unpredictable. Herein, we developed a novel Ru(II)-based photosensitizer, Ru-Poma. Possessing the E3 ubiquitin ligase CRBN-targeting moiety and high singlet oxygen yield of 0.96, Ru-Poma was demonstrated to specifically photodegrade endogenous CRBN, increase lipid peroxide, downregulate GPX4 and GAPDH expression, and consequently induce ferroptosis in cisplatin-resistant cancerous cells. Furthermore, with the deep penetration of two-photon excitation, Ru-Poma achieved drug-resistant circumvention in a 3D tumor cell model. Thus, we describe the first sample of the CRBN-targeting Ru(II) complex active in PDT.


Assuntos
Antineoplásicos , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Ferroptose , Fotoquimioterapia , Fármacos Fotossensibilizantes , Rutênio , Ubiquitina-Proteína Ligases , Humanos , Ferroptose/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Cisplatino/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Rutênio/química , Rutênio/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Fótons , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
4.
Anal Chem ; 96(17): 6666-6673, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623755

RESUMO

Nitric oxide (NO) is a crucial signal molecule closely linked to the biological immune response, especially in macrophage polarization. When activated, macrophages enter a pro-inflammatory state and produce NO, a marker for the M1 phenotype. In contrast, the anti-inflammatory M2 phenotype does not produce NO. We developed a mitochondria-targeted two-photon iridium-based complex (Ir-ImNO) probe that can detect endogenous NO and monitor macrophages' different immune response states using various imaging techniques, such as one- and two-photon phosphorescence imaging and phosphorescence lifetime imaging. Ir-ImNO was used to monitor the immune activation of macrophages in mice. This technology aims to provide a clear and comprehensive visualization of macrophage immune responses.


Assuntos
Macrófagos , Mitocôndrias , Óxido Nítrico , Óxido Nítrico/análise , Óxido Nítrico/metabolismo , Animais , Macrófagos/imunologia , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/química , Camundongos , Células RAW 264.7 , Irídio/química , Imagem Multimodal , Corantes Fluorescentes/química , Camundongos Endogâmicos C57BL , Imagem Óptica
5.
Chem Commun (Camb) ; 60(20): 2776-2779, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38357825

RESUMO

A hetero-bimetallic Ru(II)-Ir(III) photosensitizer was developed. Upon light exposure, contrary to the homogeneous Ru(II)-Ru(II) and Ir(III)-Ir(III) complexes that can only produce singlet oxygen, Ru(II)-Ir(III) can generate multiple reactive oxygen species and kill hypoxic tumors. This study presents the first example of a hetero-bimetallic type-I and type-II dual photosensitizer.


Assuntos
Neoplasias , Fotoquimioterapia , Rutênio , Humanos , Fármacos Fotossensibilizantes/farmacologia , Neoplasias/tratamento farmacológico , Oxigênio Singlete , Hipóxia , Rutênio/farmacologia
6.
Adv Healthc Mater ; 13(5): e2302564, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38073257

RESUMO

Multidrug resistance (MDR) limits the application of clinical chemotherapeutic drugs. There is an urgent need to develop non-apoptosis-inducing agents that circumvent drug resistance. Herein, four therapeutic copper complexes encapsulated in natural nanocarrier apoferritin (AFt-Cu1-4) are reported. Although they are isomers, they exhibit significantly different organelle distributions and cell death mechanisms. AFt-Cu1 and AFt-Cu3 accumulate in the cytoplasm and induce autophagy, whereas AFt-Cu2 and AFt-Cu4 can quickly enter the nucleus and trigger oncosis. Excitedly, AFt-Cu2 and AFt-Cu4 show a strong tumor growth inhibition effect in mice models bearing multidrug-resistant colon xenograft via intravenous injection. To the best of the authors' knowledge, this is the first example of metal-based nucleus-targeted oncosis inducers overcoming multidrug resistance in vivo.


Assuntos
Antineoplásicos , Neoplasias do Colo , Nanopartículas , Humanos , Camundongos , Animais , Cobre/farmacologia , Apoferritinas , Resistência a Múltiplos Medicamentos , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia
7.
Chem Sci ; 14(25): 7005-7015, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37389267

RESUMO

Drug resistance and metastases are the leading causes of death in clinics. To overcome this limitation, there is an urgent need for new therapeutic agents and drug formulations that are able to therapeutically intervene by non-traditional mechanisms. Herein, the physical adsorption and oxidative polymerization of Pt(iv) prodrugs in pore-confined spaces of CaCO3 nanoparticles is presented, and the nanomaterial surface was coated with DSPE-PEG2000-Biotin to improve aqueous solubility and tumor targeting. While the nanoparticle scaffold remained stable in an aqueous solution, it quickly degraded into Ca2+ in the presence of acid and into cisplatin in the presence of GSH. The nanoparticles were found to interact in cisplatin-resistant non-small lung cancer cells by a multimodal mechanism of action involving mitochondrial Ca2+ overload, dual depletion of GSH, nuclear DNA platination, and amplification of ROS and lipid peroxide generation, resulting in triggering cell death by a combination of apoptosis, ferroptosis and immunogenic cell death in vitro and in vivo. This study could present a novel strategy for the treatment of drug-resistant and metastatic tumors and therefore overcome the limitations of currently used therapeutic agents in the clinics.

8.
Biomaterials ; 301: 122212, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37385136

RESUMO

Melanoma represents the most fatal form of skin cancer due to its resistance mechanisms and high capacity for the development of metastases. Among other medicinal techniques, photodynamic therapy is receiving increasing attention. Despite promising results, the application of photodynamic therapy is inherently limited due to interference from melanin, poor tissue penetration of photosensitizers, low loading into drug delivery systems, and a lack of tumor selectivity. To overcome these limitations, herein, the coordination-driven assembly of Ir(III) complex photosensitizers with Fe(III) ions into nanopolymers for combined photodynamic therapy and chemodynamic therapy is reported. While remaining stable under physiological conditions, the nanopolymers dissociated in the tumor microenvironment. Upon exposure to light, the Ir(III) complexes produced singlet oxygen and superoxide anion radicals, inducing cell death by apoptosis and autophagy. The Fe(III) ions were reduced to Fe(II) upon depletion of glutathione and reduction of the GPX4 levels, triggering cell death by ferroptosis. To provide tumor selectivity, the nanopolymers were further camouflaged with exosomes. The generated nanoparticles were found to eradicate a melanoma tumor as well as inhibit the formation of metastases inside a mouse model.


Assuntos
Exossomos , Ferroptose , Melanoma , Neoplasias , Fotoquimioterapia , Animais , Camundongos , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Irídio , Compostos Férricos/uso terapêutico , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Melanoma/tratamento farmacológico , Apoptose , Linhagem Celular Tumoral , Microambiente Tumoral
9.
Chem Commun (Camb) ; 59(46): 6956-6968, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37184685

RESUMO

Metal complexes have shown promise as photosensitizers for cancer diagnosis and therapeutics. However, the vast majority of metal photosensitizers are not ideal and associated with several limitations including pharmacokinetic limitations, off-target toxicity, fast systemic clearance, poor membrane permeability, and hypoxic tumour microenvironments. Metal complex functionalized nanomaterials have the potential to construct multifunctional systems, which not only overcome the above defects of metal complexes but are also conducive to modulating the tumour microenvironment (TME) and employing combination therapies to boost photodynamic therapy (PDT) efficacy. In this review, we first introduce the current challenges of photodynamic therapy and summarize the recent research strategies (such as metal coordination bonds, self-assembly, π-π stacking, physisorption, and so on) used for preparing metal complexes functionalized nanomaterials in the application of PDT.


Assuntos
Complexos de Coordenação , Nanoestruturas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Complexos de Coordenação/química , Nanoestruturas/química , Terapia Combinada , Neoplasias/patologia , Microambiente Tumoral
10.
Chem Sci ; 14(6): 1461-1471, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36794192

RESUMO

Conventional photodynamic therapy mainly causes a therapeutic effect on the primary tumor through the localized generation of reactive oxygen species, while metastatic tumors remain poorly affected. Complementary immunotherapy is effective in eliminating small, non-localized tumors distributed across multiple organs. Here, we report the Ir(iii) complex Ir-pbt-Bpa as a highly potent immunogenic cell death inducing photosensitizer for two-photon photodynamic immunotherapy against melanoma. Ir-pbt-Bpa can produce singlet oxygen and superoxide anion radicals upon light irradiation, causing cell death by a combination of ferroptosis and immunogenic cell death. In a mouse model with two physically separated melanoma tumors, although only one of the primary tumors was irradiated, a strong tumor reduction of both tumors was observed. Upon irradiation, Ir-pbt-Bpa not only induced the immune response of CD8+ T cells and the depletion of regulatory T cells, but also caused an increase in the number of the effector memory T cells to achieve long-term anti-tumor immunity.

11.
Small Methods ; 7(5): e2201403, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36549671

RESUMO

Cancer ranks as a leading cause of death. There is an urgent need to develop minimally invasive methods to eradicate tumors and prevent their recurrence. As a light-driven modality, photodynamic therapy takes advantage of high tumor selectivity and low normal tissue damage. However, it shows poor potential for preventing tumor recurrence. Immunotherapy is currently being used as an alternative treatment for the control of malignant diseases. Although immunotherapy can establish long-time immune memory and efficiently protects treated patients from cancer relapse, its clinical efficacy is limited by the minority of patients' responding rate. Recently, photodynamic immunotherapy, which utilizes photosensitizers as an immunotherapy trigger to exert synergistic effects of photodynamic therapy and tumor immunotherapy, has attracted considerable interest. Like all the newly proposed treatments, there is still room for improvement. In this mini review, the progress in photodynamic immunotherapy with metal-based photosensitizers is summarized. It is hoped that this review can give a broad update on photodynamic immunotherapy and inspire readers.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Neoplasias/tratamento farmacológico , Imunoterapia , Resultado do Tratamento
12.
Angew Chem Int Ed Engl ; 61(33): e202204866, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35736788

RESUMO

The application of G-quadruplex stabilizers presents a promising anticancer strategy. However, the molecular crowding conditions within cells diminish the potency of current G-quadruplex stabilizers. Herein, chiral RuII -PtII dinuclear complexes were developed as highly potent G-quadruplex stabilizers even under challenging molecular crowding conditions. The compounds were encapsulated with biotin-functionalized DNA cages to enhance sub-cellular localization and provide cancer selectivity. The nanoparticles were able to efficiently inhibit the endogenous activities of telomerase in cisplatin-resistant cancer cells and cause cell death by apoptosis. The nanomaterials demonstrated high antitumor activity towards cisplatin-resistant tumor cells as well as tumor-bearing mice. To the best of our knowledge, this study presents the first example of a RuII -PtII dinuclear complex as a G-quadruplex stabilizer with an anti-cancer effect towards drug-resistant tumors inside an animal model.


Assuntos
Antineoplásicos , Complexos de Coordenação , Quadruplex G , Neoplasias , Rutênio , Telomerase , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cisplatino/metabolismo , Cisplatino/farmacologia , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , DNA , Camundongos , Rutênio/metabolismo , Rutênio/farmacologia , Telomerase/genética , Telômero
13.
Angew Chem Int Ed Engl ; 61(28): e202205429, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35532958

RESUMO

The clinical application of photodynamic therapy is hindered by the high glutathione concentration, poor cancer-targeting properties, poor drug loading into delivery systems, and an inefficient activation of the cell death machinery in cancer cells. To overcome these limitations, herein, the formulation of a promising IrIII complex into a biodegradable coordination polymer (IrS NPs) is presented. The nanoparticles were found to remain stable under physiological conditions but deplete glutathione and disintegrate into the monomeric metal complexes in the tumor microenvironment, causing an enhanced therapeutic effect. The nanoparticles were found to selectively accumulate in the mitochondria where these trigger cell death by hybrid apoptosis and ferroptosis pathways through the photoinduced production of singlet oxygen and superoxide anion radicals. This study presents the first example of a coordination polymer that can efficiently cause cancer cell death by apoptosis and ferroptosis upon irradiation, providing an innovative approach for cancer therapy.


Assuntos
Complexos de Coordenação , Ferroptose , Fotoquimioterapia , Apoptose , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Glutationa , Irídio/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Polímeros/farmacologia
14.
J Am Chem Soc ; 144(9): 4091-4101, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35171598

RESUMO

Despite the clinical success of photodynamic therapy (PDT), the application of this medical technique is intrinsically limited by the low oxygen concentrations found in cancer tumors, hampering the production of therapeutically necessary singlet oxygen (1O2). To overcome this limitation, we report on a novel mitochondria-localized iridium(III) endoperoxide prodrug (2-O-IrAn), which, upon two-photon irradiation in NIR, synergistically releases a highly cytotoxic iridium(III) complex (2-IrAn), singlet oxygen, and an alkoxy radical. 2-O-IrAn was found to be highly (photo-)toxic in hypoxic tumor cells and multicellular tumor spheroids (MCTS) in the nanomolar range. To provide cancer selectivity and improve the pharmacological properties of 2-O-IrAn, it was encapsulated into a biotin-functionalized polymer. The generated nanoparticles were found to nearly fully eradicate the tumor inside a mouse model within a single treatment. This study presents, to the best of our knowledge, the first example of an iridium(III)-based endoperoxide prodrug for synergistic photodynamic therapy/photoactivated chemotherapy, opening up new avenues for the treatment of hypoxic tumors.


Assuntos
Neoplasias , Fotoquimioterapia , Pró-Fármacos , Animais , Linhagem Celular Tumoral , Hipóxia/tratamento farmacológico , Irídio/farmacologia , Camundongos , Mitocôndrias , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Oxigênio Singlete/uso terapêutico
15.
Photochem Photobiol ; 98(1): 85-91, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33617666

RESUMO

Four iridium (III) complexes Ir1-Ir4 were synthesized and characterized. Possessing high singlet oxygen production ability and specific mitochondria-localization, Ir1 was developed as a mitochondria-targeting photosensitizer. Ir1 exhibited strong phototoxicity against cancer cell line A549 and its corresponding cisplatin-resistant one A549R. In contrast, Ir1 showed low cytotoxicity toward normal cell HLF. This selectivity resulted from the different uptake amount. With 405 nm irradiation, Ir1 induced mitochondria-mediated cell death in A549R cells, achieving the overcome of drug-resistant.


Assuntos
Antineoplásicos , Complexos de Coordenação , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Cisplatino/farmacologia , Complexos de Coordenação/farmacologia , Irídio/metabolismo , Irídio/farmacologia , Mitocôndrias/metabolismo , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo
16.
Dalton Trans ; 50(40): 14332-14341, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34558567

RESUMO

Photodynamic therapy (PDT) provides an alternative option to root out localized triple-negative breast cancer (TNBC) and has been experiencing a surge of research interest over recent years. In this study, we put forward a paradigm of designing novel transition metal-based PSs with the following characteristics: favorable cell-permeability, significant light-harvesting ability and prominent ROS yield. A novel BODIPY-Ir(III) conjugate has been designed as a photoinduced ROS (1O2, ˙OH and ˙O2-) generator. BODIPY-Ir is highly photoactive in subduing cancer cells in the PDT regimen with PI values ranging from 172 to 519 and EC50 in the nanomolar regime. Among various cancerous cell lines, TNBC was especially sensitive to BODIPY-Ir-mediated PDT, with a stunning EC50 value of 4.32 nM (PI = 519) under a moderate flux of visible-light irradiation (500 nm, 10.5 mW cm-2). BODIPY-Ir mainly accumulates in mitochondria and induces cell apoptosis under irradiation. Furthermore, the nanomolar antiproliferative activity of BODIPY-Ir is retained under hypoxia (2.5% O2). This work sheds light on instilling the O2-independent type I mechanism and conferring a red-shift absorption to metal-based PSs which fundamentally facilitate the clinical translation of PSs.


Assuntos
Antineoplásicos/farmacologia , Compostos de Boro/farmacologia , Complexos de Coordenação/farmacologia , Compostos Férricos/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Compostos de Boro/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Férricos/química , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular , Fotoquimioterapia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
17.
ACS Appl Mater Interfaces ; 13(33): 38959-38968, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34379404

RESUMO

Chemotherapy continues to be the most commonly applied strategy for cancer. Despite the impressive clinical success obtained with several drugs, increasing numbers of (multi)drug-resistant tumors are reported. To overcome this shortcoming, novel drug candidates and delivery systems are urgently needed. Herein, a therapeutic copper polypyridine complex encapsulated in natural nanocarrier apoferritin is reported. The generated nanoparticles showed higher cytotoxicity toward various (drug-resistant) cancer cell lines than noncancerous cells. The study of the mechanism revealed that the compound triggers cell autophagy-dependent apoptosis. Promisingly, upon injection of the nanodrug conjugate into the bloodstream of a mouse model bearing a multidrug-resistant colon tumor, a strong tumor growth inhibition effect was observed. To date, this is the first study describing the encapsulation of a copper complex in apoferritin that acts by autophagy-dependent apoptosis.


Assuntos
Antineoplásicos/química , Apoferritinas/química , Neoplasias do Colo/tratamento farmacológico , Complexos de Coordenação/química , Cobre/química , Nanocápsulas/química , Animais , Antineoplásicos/farmacologia , Apoferritinas/metabolismo , Morte Celular Autofágica/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Complexos de Coordenação/farmacologia , Composição de Medicamentos , Liberação Controlada de Fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais
18.
Biomaterials ; 276: 121064, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34391019

RESUMO

The photodynamic therapy (PDT) of cancer is limited by tumor hypoxia as PDT efficiency depends on O2 concentration. A novel oxygen self-sufficient photosensitizer (Ru-g-C3N4) was therefore designed and synthesized via a facile one-pot method in order to overcome tumor hypoxia-induced PDT resistance. The photosensitizer is based on [Ru(bpy)2]2+ coordinated to g-C3N4 nanosheets by Ru-N bonding. Compared to pure g-C3N4, the resulting nanosheets exhibit increased water solubility, stronger visible light absorption, and enhanced biocompatibility. Once Ru-g-C3N4 is taken up by hypoxic tumor cells and exposed to visible light, the nanosheets not only catalyze the decomposition of H2O2 and H2O to generate O2, but also catalyze H2O2 and O2 concurrently to produce multiple ROS (•OH, •O2-, and 1O2). In addition, Ru-g-C3N4 affords luminescence imaging, while continuously generating O2 to alleviate hypoxia greatly improving PDT efficacy. To the best of our knowledge, this oxygen self-sufficient photosensitizer produced via grafting a metal complex onto g-C3N4 is the first of its type to be reported.


Assuntos
Fotoquimioterapia , Rutênio , Grafite , Humanos , Peróxido de Hidrogênio , Hipóxia/tratamento farmacológico , Compostos de Nitrogênio , Oxigênio , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio
20.
Chem Sci ; 12(7): 2357-2367, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-34164000

RESUMO

Phosphorescent metal complexes are a new kind of multifunctional antitumor compounds that can integrate imaging and antitumor functions in a single molecule. In this minireview, we summarize the recent research progress in this field, concentrating on the theranostic applications of phosphorescent iridium(iii), ruthenium(ii) and rhenium(i) complexes. The molecular design that affords these complexes with tumour- or subcellular organelle-targeting properties is elucidated. The potential of these complexes to induce and monitor the dynamic behavior of subcellular organelles and the changes in microenvironment during the process of therapy is demonstrated. Moreover, the potential and advantages of applying new technologies, such as super-resolution imaging and phosphorescence lifetime imaging, are also described. Finally, the challenges faced in the development of novel theranostic metallo-anticancer complexes for possible clinical translation are proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA