Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 190: 240-247, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36148723

RESUMO

Weeds tend to develop resistance to herbicides with time. Understanding the resistance mechanisms evolved by weeds would help manage weed infestation. Sagittaria trifolia, a paddy weed found in the rice fields of Liaoning, China, has developed resistance to bensulfuron-methyl, causing severe yield losses in rice. This study deciphers the underlying mechanisms in terms of non-target-site resistance toward bensulfuron-methyl. We compared the ability of glutathione S-transferase (GST) mediated detoxification metabolism and reactive oxygen species (ROS) scavenging between sensitive (NHS) and resistant (NHR) populations of S. trifolia. The resistance ratio of NHR was 210; but the ratio was significantly decreased after GST-inhibitor treatment (44.9). This indicated that a GST-mediated enhancement of detoxification metabolism stimulated the development of resistance. Similarly, higher GST activity was observed in NHR; but the activity equaled that of NHS after GST-inhibitor treatment. However, treatment with the GST-inhibitor did not completely reverse bensulfuron-methyl resistance in NHR, indicating that additional factors contributed to herbicide resistance in these plants. We observed a rapid increase in H2O2 and malondialdehyde accumulation in the case of NHS after bensulfuron-methyl application, whereas those of NHR remained relatively stable, implying that NHR exhibited higher ROS-scavenging capacity under herbicide stress. Further, NHR showed higher glutathione and ascorbic acid contents and higher activities of glutathione reductase and dehydrogenase reductase, all of which contribute towards herbicide resistance in these plants. Our results indicate that GST-mediated detoxification metabolism of bensulfuron-methyl and ROS scavenging capacity contributed to the development of resistance in S. trifolia.


Assuntos
Herbicidas , Sagittaria , Antioxidantes/farmacologia , Ácido Ascórbico , Glutationa/metabolismo , Glutationa Redutase , Glutationa Transferase , Resistência a Herbicidas , Herbicidas/farmacologia , Peróxido de Hidrogênio , Malondialdeído , Plantas Daninhas/metabolismo , Espécies Reativas de Oxigênio , Sagittaria/metabolismo , Compostos de Sulfonilureia
2.
Chem Biol Interact ; 308: 155-163, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31102647

RESUMO

Chelidonium majus L. is a herbal medicine widely employed in Europe and Western Asia. Chelidonine (CHE) is a major constituent of the herb and has been reported to be an inhibitor of the cytochrome P450 enzymes (CYP). The major objective of the present study was to study the metabolic pathways of CHE in order to identify potential reactive metabolites responsible for the enzyme inhibition. Three oxidative metabolites (M1-M3) were detected in human liver microsomal incubations after exposure to CHE. M1 and M2 were two isomers of catechol derivatives, and M3 was a dicatechol compound. The M1-M3 metabolites were also observed in bile of rats given CHE. A total of five glutathione (GSH) conjugates (M4-M8) were detected in microsomes containing CHE, GSH, and NADPH. Moreover, M4 and M6 originated from M1, M5 and M7 resulted from M2, and M8 was a M3-derived GSH conjugate. Three biliary CHE-derived GSH conjugates (M4, M5 and M8) were found in CHE-treated rats. This indicates that CHE was bioactivated to ortho-quinone derivatives both in vitro and in vivo. Recombinant P450 enzyme incubations demonstrated that the CYPs3A4, 1A2, 2C19 and 2D6 were mainly involved in metabolic activation of CHE. This study generated data that may be useful in understanding possible mechanisms of CHE-induced P450 inhibition.


Assuntos
Benzofenantridinas/metabolismo , Ativação Metabólica , Animais , Benzofenantridinas/química , Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450/metabolismo , Glutationa/química , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
3.
Int J Biol Macromol ; 121: 806-813, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30340006

RESUMO

Pesticides contamination of water has caused considerable concern due to the potential hazard to human health. For the first time, mesoporous activated carbon from starch (ACS) was applied to remove pesticides from water. ACS could remove 11 pesticides rapidly (shake five times). The adsorption rates of ACS (>80%) for the 11 pesticides were higher than those of other adsorbents, including commercial activated carbon (AC), graphitised carbon black (GCB), C18, and primary secondary amine adsorbent (PSA). The mechanisms of the adsorption process for pyraclostrobin were also investigated. The pseudo-second-order model could better describe the adsorption for pyraclostrobin (R2 = 0.99950). Langmuir model gave the best fit for the isotherm data (R2 = 0.99899). Our findings demonstrate that oxygen-containing functional groups, N atom and π-bonding network of benzene promoted the adsorption. The adsorption efficiency of the ACS for 11 pesticides was still over 80% after five cycles.


Assuntos
Carvão Vegetal/química , Praguicidas/química , Praguicidas/isolamento & purificação , Amido/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Aminas/química , Concentração de Íons de Hidrogênio , Cinética , Porosidade , Solubilidade , Fatores de Tempo , Água/química
4.
Se Pu ; 33(10): 1080-9, 2015 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-26930966

RESUMO

A method for rapid screening and confirmation of 205 pesticide residues in rice was developed by combining QuEChERS and high performance liquid chromatography-triple quadrupole-linear ion trap mass spectrometry (LC-Q-TRAP/MS). The rice samples were extracted with acetonitrile, and then cleaned up with primary secondary amine (PSA), anhydrous magnesium sulfate (MgSO4) and C18 adsorbent. Finally, the samples were detected by LC-Q-TRAP/MS in multiple reaction monitoring with information-dependent acquisition of enhanced product ion (MRM-IDA-EPI) mode followed with database searching. A total of 205 pesticide residues were confirmed by retention times, ion pairs and the database searching using EPI library, and quantified by external standard method. All the pesticides showed good linearities with linear correlation coefficients all above 0.995. The limits of quantification (LOQs) for the 205 pesticides were 0.5-10.0 µg/kg. The average recoveries of the 205 pesticides ranged from 62.4% to 127.1% with the relative standard deviations (RSDs) of 1.0% - 20.0% at spiked levels of 10 µg/kg and 50 µg/kg, and only 20 min were needed for the analysis of an actual rice sample. In brief, the method is fast, accurate and highly sensitive, and is suitable for the screening and confirmation of pesticide residues in rice.


Assuntos
Contaminação de Alimentos , Oryza/química , Resíduos de Praguicidas/análise , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA