Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552162

RESUMO

Paris polyphylla var. yunnanensis is a perennial herb with diverse chemical components having wide-ranging pharmacological effects. The demand for P. polyphylla var. yunnanensis as a raw material increases greatly and currently exceeds 1,000 tons per year (Zhou et al. 2021). In September 2021, root rot was observed on P. polyphylla var. yunnanensis in Mangshi, Yunnan province, China. Average disease incidences in the fields reached 15%, with diseased plants exhibiting yellowing and wilting leaves, as well as browning and rotting roots. Cross sections (5 × 5 mm2) cut from the margin of symptomatic and asymptomatic root tissues were surface-sterilized for 30 s with 75% ethanol, followed by 180 s with 1% sodium hypochlorite. After rinsing thrice with sterile distilled water, the fragments were transferred to potato dextrose agar (PDA) plates and incubated at 28°C in the dark. Ten isolates were obtained, and single spore isolation was performed. These isolates showed similar morphological characters, with colonies ranging in color from white to pale cream and sparse mycelia. Conidia were produced on the top or side of phialides. Microconidia were oval or reniform, 0- or 1-septate, with a diameter of 5.1-10.7 µm × 1.6-3.9 µm (average 7.6 µm × 2.8 µm) (n=30). The macroconidia were straight to slightly curved or sickle-shaped, 3- to 5-septate, with a diameter of 15.1-27.9 µm × 2.8-4.0 µm (average 21.0 µm × 3.6 µm). Chlamydospores were smooth, nearly round, and 3.3-6.6 (average 4.9) µm in diameter. Genomic DNA were extracted from mycelia of the two isolates. The nuclear ribosomal internal transcribed spacer (ITS), translation elongation factor 1 alpha (EF1α), and the second largest subunit of nuclear DNA-directed RNA polymerase II (RPB2) were amplified with the primer pairs of ITS1/ITS4 (White et al. 1990), EF1-728F/EF1-986R (Carbone and Kohn 1999), and fRPB2-5F/fRPB2-7cR (Liu et al. 1999), respectively. These two isolates exhibited the same nucleotide sequences (ITS, OP646781; EF1α, OP661172; RPB2, OP661173), with BLASTn analyses showing 100%, 99.66%, and 99.65% identity, respectively, with Fusarium solani (syn. Neocosmospora solani) (Crespo et al. 2019) strain NRRL 43474 (ITS, EF453097; EF1α, EF452945; RPB2, EF469984). A phylogenetic tree was constructed using MEGAX based on the nucleotide sequences of ITS, EF1α, and RPB2, using the maximum likelihood method. The isolate was classified into the F. solani clade. According to the morphology and sequence analyses, the isolate was identified as F. solani (Chehri et al. 2015), and named PpFs1. To test the pathogenicity of the isolate PpFs1, the roots of four years old P. polyphylla var. yunnanensis plants were dipped in 107 spore/mL suspension filtered from potato dextrose broth (PDB) for 30 min, while control roots were dipped in sterile water. After inoculation, all plants were transplanted in pots filled with sterile soil and kept at 25°C with a 12/12-h light/darkness photoperiod. Six plants were used for each treatment, and repeated thrice. Two months after inoculation, the infected plants showed wilted leaves and rotted roots, while controls remained asymptomatic. PpFs1, identified by morphology and ITS, was re-isolated from infected plants, and was found to comply with Koch's postulates. To the best of our knowledge, F. oxysporum and F. concentricum causes Paris polyphylla var. Chinensis stem rot in China. But this is the first report of root rot on P. polyphylla var. yunnanensis being caused by F. solani in Yunnan, China.

2.
Sci Rep ; 13(1): 10040, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340012

RESUMO

A novel betanucleorhabdovirus infecting Paris polyphylla var. yunnanensis, tentatively named Paris yunnanensis rhabdovirus 1 (PyRV1), was recently identified in Yunnan Province, China. The infected plants showed vein clearing and leaf crinkle at early stage of infection, followed by leaf yellowing and necrosis. Enveloped bacilliform particles were observed using electron microscopy. The virus was mechanically transmissible to Nicotiana bethamiana and N. glutinosa. The complete genome of PyRV1 consists of 13,509 nucleotides, the organization of which was typical of rhabdoviruses, containing six open reading frames encoding proteins N-P-P3-M-G-L on the anti-sense strand, separated by conserved intergenic regions and flanked by complementary 3'-leader and 5'-trailer sequences. The genome of PyRV1 shared highest nucleotide sequence identity (55.1%) with Sonchus yellow net virus (SYNV), and the N, P, P3, M, G, and L proteins showed 56.9%, 37.2%, 38.4%, 41.8%, 56.7%, and 49.4% amino acid sequence identities with respective proteins of SYNV, suggesting RyRV1 belongs to a new species of the genus Betanucleorhabdovirus.


Assuntos
Liliaceae , Melanthiaceae , Rhabdoviridae , Filogenia , Genoma Viral , China , Melanthiaceae/genética , Rhabdoviridae/genética
3.
Arch Virol ; 168(2): 43, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609602

RESUMO

The complete genome sequence of a new potyvirus from Paris polyphylla var. yunnanensis was determined. Its genomic RNA consists of 9571 nucleotides (nt), excluding the 3'-terminal poly(A) tail, containing the typical open reading frame (ORF) of potyviruses and encoding a putative large polyprotein of 3061 amino acids. The virus shares 54.20%-59.60% nt sequence identity and 51.80%-57.90% amino acid sequence identity with other potyviruses. Proteolytic cleavage sites and conserved motifs of potyviruses were identified in the polyprotein and within individual proteins. Phylogenetic analysis indicated that the virus was most closely related to lily yellow mosaic virus. The results suggest that the virus should be classified as a member of a novel species within the genus Potyvirus, and we have tentatively named this virus "Paris yunnanensis mosaic chlorotic virus" (PyMCV).


Assuntos
Liliaceae , Melanthiaceae , Potyvirus , Filogenia , Genoma Viral , RNA Viral/genética , Liliaceae/genética , Fases de Leitura Aberta , Poliproteínas/genética , Análise de Sequência , Doenças das Plantas
4.
Arch Virol ; 168(2): 42, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609607

RESUMO

The complete genome sequence of a putative novel potyvirus, tentatively named "polygonatum mosaic-associated virus 1" (PMaV1), was sequenced from naturally infected Polygonatum cyrtonema Hua in China. PMaV1 has a typical genome organization of potyviruses with a single large open reading frame (nt 119-9448) that encodes a 3109-aa polyprotein that is predicted to be cleaved into 10 mature proteins by virus-encoded proteases. Pairwise comparisons revealed that PMaV1 shares 71.50% complete genome sequence identity with Polygonatum kingianum virus 4 and 80.00% amino acid sequence identity with Polygonatum kingianum virus 3 of the genus Potyvirus. Phylogenetic analysis indicated that PMaV1 clustered with other potyviruses and that it was most closely related to Polygonatum kingianum virus 3 and Polygonatum kingianum virus 4. These results suggest that PMaV1 is a new member of the genus Potyvirus of the family Potyviridae (Nucleotide sequence data reported are available in the GenBank databases under the accession number OP380926).


Assuntos
Polygonatum , Potyviridae , Potyvirus , Potyvirus/genética , Filogenia , Genoma Viral , Potyviridae/genética , Fases de Leitura Aberta , Doenças das Plantas , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA