Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nat Chem Biol ; 20(2): 180-189, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37697004

RESUMO

CRISPR-Cas12f nucleases are currently one of the smallest genome editors, exhibiting advantages for efficient delivery via cargo-size-limited adeno-associated virus delivery vehicles. Most characterized Cas12f nucleases recognize similar T-rich protospacer adjacent motifs (PAMs) for DNA targeting, substantially restricting their targeting scope. Here we report the cryogenic electron microscopy structure and engineering of a miniature Clostridium novyi Cas12f1 nuclease (CnCas12f1, 497 amino acids) with rare C-rich PAM specificity. Structural characterizations revealed detailed PAM recognition, asymmetric homodimer formation and single guide RNA (sgRNA) association mechanisms. sgRNA engineering transformed CRISPR-CnCas12f1, which initially was incapable of genome targeting in bacteria, into an effective genome editor in human cells. Our results facilitate further understanding of CRISPR-Cas12f1 working mechanism and expand the mini-CRISPR toolbox.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Humanos , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , DNA/química , Genoma , Endonucleases/genética , Endonucleases/metabolismo , Edição de Genes
2.
ACS Synth Biol ; 13(1): 269-281, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38061052

RESUMO

CRISPR-Cas9 systems have been widely harnessed for diverse genome editing applications because of their ease of use and high efficiency. However, the large molecular sizes and strict PAM requirements of commonly used CRISPR-Cas9 systems restrict their broad applications in therapeutics. Here, we report the molecular basis and genome editing applications of a novel compact type II-A Eubacterium ventriosum CRISPR-Cas9 system (EvCas9) with 1107 residues and distinct 5'-NNGDGN-3' (where D represents A, T, or G) PAM specificity. We determine the cryo-EM structure of EvCas9 in a complex with an sgRNA and a target DNA, revealing the detailed PAM recognition and sgRNA and target DNA association mechanisms. Additionally, we demonstrate the robust genome editing capacity of EvCas9 in bacteria and human cells with superior fidelity compared to SaCas9 and SpCas9, and we engineer it to be efficient base editors by fusing a cytidine or adenosine deaminase. Collectively, our results facilitate further understanding of CRISPR-Cas9 working mechanisms and expand the compact CRISPR-Cas9 toolbox.


Assuntos
Sistemas CRISPR-Cas , Eubacterium , Edição de Genes , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , DNA/genética
4.
Nat Chem Biol ; 17(11): 1132-1138, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34475565

RESUMO

The RNA-guided CRISPR-associated (Cas) nucleases are versatile tools for genome editing in various organisms. The large sizes of the commonly used Cas9 and Cas12a nucleases restrict their flexibility in therapeutic applications that use the cargo-size-limited adeno-associated virus delivery vehicle. More compact systems would thus offer more therapeutic options and functionality for this field. Here, we report a miniature class 2 type V-F CRISPR-Cas genome-editing system from Acidibacillus sulfuroxidans (AsCas12f1, 422 amino acids). AsCas12f1 is an RNA-guided endonuclease that recognizes 5' T-rich protospacer adjacent motifs and creates staggered double-stranded breaks to target DNA. We show that AsCas12f1 functions as an effective genome-editing tool in both bacteria and human cells using various delivery methods, including plasmid, ribonucleoprotein and adeno-associated virus. The small size of AsCas12f1 offers advantages for cellular delivery, and characterizations of AsCas12f1 may facilitate engineering more compact genome-manipulation technologies.


Assuntos
Bacillales/química , Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Edição de Genes
5.
Medicine (Baltimore) ; 98(42): e17335, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31626089

RESUMO

BACKGROUND: Previous studies have shown that microRNA-32 (miRNA-32) is an exosome microRNA that affects the proliferation and metastasis of non-small cell lung cancer (NSCLC) cells. In this study, our goal was to assess the expression of plasma microRNA-32 and its potential as a biomarker to predict the tumor response and survival of patients with NSCLC undergoing platinum-based chemotherapy. METHODS: Plasma microRNA-32 levels before and after 1 cycle of platinum-based chemotherapy in 43 patients with NSCLC were measured using a quantitative real-time polymerase chain reaction assay (qPCR). In addition, the demographic and survival data of the patients were collected for analysis. RESULTS: A significant correlation was observed between the changes in microRNA-32 levels before and after 1 chemotherapy cycle and the treatment response (P = .035). In addition, Kaplan-Meier analysis showed that the level of microRNA-32 after 1 chemotherapy cycle was significantly correlated with the prognosis of patients. The median progression-free survival (P = .025) and overall survival (P = .015) of patients with high microRNA-32 levels (≥7.73) after 1 chemotherapy cycle was 9 and 21 months, respectively. In contrast, the median survival of patients with low microRNA-32 levels (<7.73) was 5 and 10 months, respectively. CONCLUSIONS: The plasma levels of microRNA-32 correlated with the efficacy of platinum-based chemotherapy and survival, indicating that microRNA-32 may be useful for predicting the effectiveness of platinum-based chemotherapy and prognosis in NSCLC.


Assuntos
Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Neoplasias Pulmonares/genética , MicroRNAs/genética , Carcinoma de Pequenas Células do Pulmão/genética , Idoso , Biomarcadores Tumorais/genética , Estudos Controlados Antes e Depois , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Terapia Neoadjuvante , Modelos de Riscos Proporcionais , Reação em Cadeia da Polimerase em Tempo Real , Carcinoma de Pequenas Células do Pulmão/sangue , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/mortalidade , Resultado do Tratamento
6.
Mol Microbiol ; 109(5): 642-662, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29995988

RESUMO

Biotin (vitamin B7), a sulfur-containing fatty acid derivative, is a nutritional virulence factor in certain mycobacterial species. Tight regulation of biotin biosynthesis is important because production of biotin is an energetically expensive process requiring 15-20 equivalents of ATP. The Escherichia coli bifunctional BirA is a prototypical biotin regulatory system. In contrast, mycobacterial BirA is an unusual biotin protein ligase without DNA-binding domain. Recently, we established a novel two-protein paradigm of BioQ-BirA. However, structural and molecular mechanism for BioQ is poorly understood. Here, we report crystal structure of the M. smegmatis BioQ at 1.9 Å resolution. Structure-guided functional mapping defined a seven residues-requiring motif for DNA-binding activity. Western blot and MALDI-TOF MS allowed us to unexpectedly discover that the K47 acetylation activates crosstalking of BioQ to its cognate DNA. More intriguingly, excess of biotin augments the acetylation status of BioQ in M. smegmatis. It seems likely that BioQ acetylation proceeds via a non-enzymatic mechanism. Mutation of this acetylation site K47 in BioQ significantly impairs its regulatory role in vivo. This explains in part (if not all) why BioQ has no detectable requirement of the presumable bio-5'-AMP effecter, which is a well-known ligand for the paradigm E. coli BirA regulator system. Unlike the scenario seen with E. coli carrying a single biotinylated protein, AccB, genome-wide search and Streptavidin blot revealed that no less than seven proteins require the rare post-translational modification, biotinylation in M. smegmatis, validating its physiological demand for biotin at relatively high level. Taken together, our finding defines a novel biotin regulatory machinery by BioQ, posing a possibility that development of new antibiotics targets biotin, the limited nutritional virulence factor in certain pathogenic mycobacterial species.


Assuntos
Proteínas de Bactérias/química , Biotina/biossíntese , Mycobacterium smegmatis/enzimologia , Fatores de Transcrição/química , Acetilação , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/genética , Monofosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Biotina/análogos & derivados , Biotina/química , Biotina/genética , Biotina/metabolismo , Biotinilação , Cristalografia por Raios X , Modelos Moleculares , Mycobacterium smegmatis/genética , Plasmídeos , Conformação Proteica , Fatores de Transcrição/genética
7.
Nat Cell Biol ; 17(11): 1484-96, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26479318

RESUMO

The oxidative pentose phosphate pathway (PPP) contributes to tumour growth, but the precise contribution of 6-phosphogluconate dehydrogenase (6PGD), the third enzyme in this pathway, to tumorigenesis remains unclear. We found that suppression of 6PGD decreased lipogenesis and RNA biosynthesis and elevated ROS levels in cancer cells, attenuating cell proliferation and tumour growth. 6PGD-mediated production of ribulose-5-phosphate (Ru-5-P) inhibits AMPK activation by disrupting the active LKB1 complex, thereby activating acetyl-CoA carboxylase 1 and lipogenesis. Ru-5-P and NADPH are thought to be precursors in RNA biosynthesis and lipogenesis, respectively; thus, our findings provide an additional link between the oxidative PPP and lipogenesis through Ru-5-P-dependent inhibition of LKB1-AMPK signalling. Moreover, we identified and developed 6PGD inhibitors, physcion and its derivative S3, that effectively inhibited 6PGD, cancer cell proliferation and tumour growth in nude mice xenografts without obvious toxicity, suggesting that 6PGD could be an anticancer target.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Lipogênese , Neoplasias/metabolismo , Via de Pentose Fosfato , Fosfogluconato Desidrogenase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Humanos , Neoplasias/patologia , Estresse Oxidativo , Ribulosefosfatos/metabolismo , Transdução de Sinais
8.
Mol Cell ; 59(3): 345-358, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26145173

RESUMO

Many human cancers share similar metabolic alterations, including the Warburg effect. However, it remains unclear whether oncogene-specific metabolic alterations are required for tumor development. Here we demonstrate a "synthetic lethal" interaction between oncogenic BRAF V600E and a ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL). HMGCL expression is upregulated in BRAF V600E-expressing human primary melanoma and hairy cell leukemia cells. Suppression of HMGCL specifically attenuates proliferation and tumor growth potential of human melanoma cells expressing BRAF V600E. Mechanistically, active BRAF upregulates HMGCL through an octamer transcription factor Oct-1, leading to increased intracellular levels of HMGCL product, acetoacetate, which selectively enhances binding of BRAF V600E but not BRAF wild-type to MEK1 in V600E-positive cancer cells to promote activation of MEK-ERK signaling. These findings reveal a mutation-specific mechanism by which oncogenic BRAF V600E "rewires" metabolic and cell signaling networks and signals through the Oct-1-HMGCL-acetoacetate axis to selectively promote BRAF V600E-dependent tumor development.


Assuntos
Leucemia de Células Pilosas/metabolismo , MAP Quinase Quinase 1/metabolismo , Melanoma/metabolismo , Fator 1 de Transcrição de Octâmero/metabolismo , Oxo-Ácido-Liases/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais , Acetoacetatos/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Regulação para Cima
9.
Nucleic Acids Res ; 43(13): 6557-67, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26068471

RESUMO

N(6)-methyladenosine (m(6)A) is the most abundant internal modification in eukaryotic messenger RNA (mRNA). Recent discoveries of demethylases and specific binding proteins of m(6)A as well as m(6)A methylomes obtained in mammals, yeast and plants have revealed regulatory functions of this RNA modification. Although m(6)A is present in the ribosomal RNA of bacteria, its occurrence in mRNA still remains elusive. Here, we have employed ultra-high pressure liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UHPLC-QQQ-MS/MS) to calculate the m(6)A/A ratio in mRNA from a wide range of bacterial species, which demonstrates that m(6)A is an abundant mRNA modification in tested bacteria. Subsequent transcriptome-wide m(6)A profiling in Escherichia coli and Pseudomonas aeruginosa revealed a conserved m(6)A pattern that is distinct from those in eukaryotes. Most m(6)A peaks are located inside open reading frames and carry a unique consensus motif of GCCAU. Functional enrichment analysis of bacterial m(6)A peaks indicates that the majority of m(6)A-modified genes are associated with respiration, amino acids metabolism, stress response and small RNAs, suggesting potential functional roles of m(6)A in these pathways.


Assuntos
Adenosina/análogos & derivados , RNA Bacteriano/química , RNA Mensageiro/química , Adenosina/análise , Escherichia coli/genética , Pseudomonas aeruginosa/genética , Temperatura
10.
Mol Cell ; 55(4): 552-65, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25042803

RESUMO

Although the oxidative pentose phosphate pathway is important for tumor growth, how 6-phosphogluconate dehydrogenase (6PGD) in this pathway is upregulated in human cancers is unknown. We found that 6PGD is commonly activated in EGF-stimulated cells and human cancer cells by lysine acetylation. Acetylation at K76 and K294 of 6PGD promotes NADP(+) binding to 6PGD and formation of active 6PGD dimers, respectively. Moreover, we identified DLAT and ACAT2 as upstream acetyltransferases of K76 and K294, respectively, and HDAC4 as the deacetylase of both sites. Expressing acetyl-deficient mutants of 6PGD in cancer cells significantly attenuated cell proliferation and tumor growth. This is due in part to reduced levels of 6PGD products ribulose-5-phosphate and NADPH, which led to reduced RNA and lipid biosynthesis as well as elevated ROS. Furthermore, 6PGD activity is upregulated with increased lysine acetylation in primary leukemia cells from human patients, providing mechanistic insights into 6PGD upregulation in cancer cells.


Assuntos
Acetil-CoA C-Acetiltransferase/metabolismo , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Histona Desacetilases/metabolismo , Leucemia/patologia , Neoplasias Pulmonares/patologia , Lisina/metabolismo , Fosfogluconato Desidrogenase/metabolismo , Acetilação , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos , NADP/metabolismo , Neoplasias Experimentais , Ligação Proteica/fisiologia , Multimerização Proteica
11.
J Bacteriol ; 196(14): 2499-513, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24769698

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from human pathogens Staphylococcus aureus and Pseudomonas aeruginosa can be readily inhibited by reactive oxygen species (ROS)-mediated direct oxidation of their catalytic active cysteines. Because of the rapid degradation of H2O2 by bacterial catalase, only steady-state but not one-dose treatment with H2O2 rapidly induces glycolysis and the pentose phosphate pathway (PPP). We conducted transcriptome sequencing (RNA-seq) analyses to globally profile the bacterial transcriptomes in response to a steady level of H2O2, which revealed profound transcriptional changes, including the induced expression of glycolytic genes in both bacteria. Our results revealed that the inactivation of GAPDH by H2O2 induces metabolic levels of glycolysis and the PPP; the elevated levels of fructose 1,6-biphosphate (FBP) and 2-keto-3-deoxy-6-phosphogluconate (KDPG) lead to dissociation of their corresponding glycolytic repressors (GapR and HexR, respectively) from their cognate promoters, thus resulting in derepression of the glycolytic genes to overcome H2O2-stalled glycolysis in S. aureus and P. aeruginosa, respectively. Both GapR and HexR may directly sense oxidative stresses, such as menadione.


Assuntos
Glicólise/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Oxidantes/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Sequência de Bases , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Gluconatos/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Pseudomonas aeruginosa/metabolismo , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Staphylococcus aureus/metabolismo , Transcriptoma
12.
Cell Host Microbe ; 13(3): 358-70, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23498960

RESUMO

Thiol-group oxidation of active and allosteric cysteines is a widespread regulatory posttranslational protein modification. Pathogenic bacteria, including Pseudomonas aeruginosa and Staphylococcus aureus, use regulatory cysteine oxidation to respond to and overcome reactive oxygen species (ROS) encountered in the host environment. To obtain a proteome-wide view of oxidation-sensitive cysteines in these two pathogens, we employed a competitive activity-based protein profiling approach to globally quantify hydrogen peroxide (H2O2) reactivity with cysteines across bacterial proteomes. We identified ∼200 proteins containing H2O2-sensitive cysteines, including metabolic enzymes, transcription factors, and uncharacterized proteins. Additional biochemical and genetic studies identified an oxidation-responsive cysteine in the master quorum-sensing regulator LasR and redox-regulated activities for acetaldehyde dehydrogenase ExaC, arginine deiminase ArcA, and glyceraldehyde 3-phosphate dehydrogenase. Taken together, our data indicate that pathogenic bacteria exhibit a complex, multilayered response to ROS that includes the rapid adaption of metabolic pathways to oxidative-stress challenge.


Assuntos
Cisteína/metabolismo , Proteoma/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Infecções Estafilocócicas/microbiologia , Animais , Proteínas de Bactérias/genética , Interações Hospedeiro-Patógeno , Humanos , Peróxido de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Estresse Oxidativo , Proteoma/genética , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/genética , Espécies Reativas de Oxigênio/metabolismo , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
13.
J Am Chem Soc ; 135(6): 2037-9, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23350529

RESUMO

The Salmonella PmrA/PmrB two-component system uses an iron(III)-binding motif on the cell surface to sense the environmental or host ferric level and regulate PmrA-controlled gene expression. We replaced the iron(III)-binding motif with a lanthanide-binding peptide sequence that is known to selectively recognize trivalent lanthanide ions. The newly engineered two-component system (PmrA/PmrB) can effectively sense lanthanide ion and regulate gene expression in E. coli . This work not only provides the first known lanthanide-based sensing and response in live cells but also demonstrates that the PmrA/PmrB system is a suitable template for future synthetic biology efforts to construct bacteria that can sense and respond to other metal ions in remediation or sequestration.


Assuntos
Proteínas de Bactérias/metabolismo , Elementos da Série dos Lantanídeos/análise , Engenharia de Proteínas , Salmonella typhimurium , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Compostos Férricos/química , Compostos Férricos/metabolismo , Íons/análise , Íons/metabolismo , Elementos da Série dos Lantanídeos/metabolismo , Modelos Biológicos , Peptídeos/química , Peptídeos/metabolismo , Salmonella typhimurium/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
14.
Proc Natl Acad Sci U S A ; 109(38): 15461-6, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22927394

RESUMO

Protein posttranslational modifications (PTMs), particularly phosphorylation, dramatically expand the complexity of cellular regulatory networks. Although cysteine (Cys) in various proteins can be subject to multiple PTMs, its phosphorylation was previously considered a rare PTM with almost no regulatory role assigned. We report here that phosphorylation occurs to a reactive cysteine residue conserved in the staphylococcal accessary regulator A (SarA)/MarR family global transcriptional regulator A (MgrA) family of proteins, and is mediated by the eukaryotic-like kinase-phosphatase pair Stk1-Stp1 in Staphylococcus aureus. Cys-phosphorylation is crucial in regulating virulence determinant production and bacterial resistance to vancomycin. Cell wall-targeting antibiotics, such as vancomycin and ceftriaxone, inhibit the kinase activity of Stk1 and lead to decreased Cys-phosphorylation of SarA and MgrA. An in vivo mouse model of infection established that the absence of stp1, which results in elevated protein Cys-phosphorylation, significantly reduces staphylococcal virulence. Our data indicate that Cys-phosphorylation is a unique PTM that can play crucial roles in bacterial signaling and regulation.


Assuntos
Proteínas de Bactérias/química , Cisteína/química , Resistência Microbiana a Medicamentos , Transativadores/química , Fatores de Transcrição/química , Abscesso/microbiologia , Sequência de Aminoácidos , Animais , Regulação Bacteriana da Expressão Gênica , Camundongos , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Homologia de Sequência de Aminoácidos , Staphylococcus aureus/metabolismo , Vancomicina/farmacologia , Virulência , Fatores de Virulência/metabolismo
15.
Proc Natl Acad Sci U S A ; 109(23): 9095-100, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22586129

RESUMO

Oxidation sensing and quorum sensing significantly affect bacterial physiology and host-pathogen interactions. However, little attention has been paid to the cross-talk between these two seemingly orthogonal signaling pathways. Here we show that the quorum-sensing agr system has a built-in oxidation-sensing mechanism through an intramolecular disulfide switch possessed by the DNA-binding domain of the response regulator AgrA. Biochemical and mass spectrometric analysis revealed that oxidation induces the intracellular disulfide bond formation between Cys-199 and Cys-228, thus leading to dissociation of AgrA from DNA. Molecular dynamics (MD) simulations suggest that the disulfide bond formation generates a steric clash responsible for the abolished DNA binding of the oxidized AgrA. Mutagenesis studies further established that Cys-199 is crucial for oxidation sensing. The oxidation-sensing role of Cys-199 is further supported by the observation that the mutant Staphylococcus aureus strain expressing AgrAC199S is more susceptible to H(2)O(2) owing to repression of the antioxidant bsaA gene under oxidative stress. Together, our results show that oxidation sensing is a component of the quorum-sensing agr signaling system, which serves as an intrinsic checkpoint to ameliorate the oxidation burden caused by intense metabolic activity and potential host immune response.


Assuntos
Proteínas de Bactérias/metabolismo , Dissulfetos/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Modelos Moleculares , Percepção de Quorum/fisiologia , Staphylococcus aureus/metabolismo , Transativadores/metabolismo , Sequência de Aminoácidos , Cisteína/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Espectrometria de Massas , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese , Oxirredução , Staphylococcus aureus/fisiologia
16.
J Biol Chem ; 287(25): 21102-9, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22553203

RESUMO

As a human pathogen, Staphylococcus aureus must cope with oxidative stress generated by the human immune system. Here, we report that CymR utilizes its sole Cys-25 to sense oxidative stress. Oxidation followed by thiolation of this cysteine residue leads to dissociation of CymR from its cognate promoter DNA. In contrast, the DNA binding of the CymRC25S mutant was insensitive to oxidation and thiolation, suggesting that CymR senses oxidative stress through oxidation of its sole cysteine to form a mixed disulfide with low molecular weight thiols. The determined crystal structures of the reduced and oxidized forms of CymR revealed that Cys-25 is oxidized to Cys-25-SOH in the presence of H(2)O(2). Deletion of cymR reduced the resistance of S. aureus to oxidative stresses, and the resistance was restored by expressing a C25S mutant copy of cymR. In a C25S substitution mutant, the expression of two genes, tcyP and mccB, was constitutively repressed and did not respond to hydrogen peroxide stress, whereas the expression of the genes were highly induced under oxidative stress in a wild-type strain, indicating the critical role of Cys-25 in redox signaling in vivo. Thus, CymR is another master regulator that senses oxidative stress and connects stress responses to virulence regulation in S. aureus.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Estresse Oxidativo/fisiologia , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Humanos , Mutação de Sentido Incorreto , Oxirredução , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Compostos de Sulfidrila/imunologia , Compostos de Sulfidrila/metabolismo
17.
J Bacteriol ; 194(7): 1753-62, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22267518

RESUMO

Staphylococcus aureus utilizes efflux transporter NorA to pump out a wide range of structurally dissimilar drugs, conferring low-level multidrug resistance. The regulation of norA expression has yet to be fully understood although past studies have revealed that this gene is under the control of the global transcriptional regulator MgrA and the two-component system ArlRS. To identify additional regulators of norA, we screened a transposon library in strain Newman expressing the transcriptional fusion norA-lacZ for altered ß-galactosidase activity. We identify a transposon insertion in fhuB, a gene that encodes a ferric hydroxamate uptake system permease, and propose that the norA transcription is iron responsive. In agreement with this observation, addition of FeCl(3) repressed the induction of norA-lacZ, suggesting that bacterial iron uptake plays an important role in regulating norA transcription. In addition, a fur (ferric uptake regulator) deletion exhibited compromised norA transcription and reduced resistance to quinolone compared to the wild-type strain, indicating that fur functions as a positive regulator of norA. A putative Fur box identified in the promoter region of norA was confirmed by electrophoretic mobility shift and DNase I footprint assays. Finally, by employing a siderophore secretion assay, we reveal that NorA may contribute to the export of siderophores. Collectively, our experiments uncover some novel interactions between cellular iron level and norA regulation in S. aureus.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Ferro/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Staphylococcus aureus/metabolismo , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Norfloxacino/farmacologia , Regiões Promotoras Genéticas , Sideróforos/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética
18.
J Am Chem Soc ; 134(1): 305-14, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22122613

RESUMO

Oxygen sensing and redox signaling significantly affect bacterial physiology and host-pathogen interaction. Here we show that a Staphylococcus aureus two-component system, AirSR (anaerobic iron-sulfur cluster-containing redox sensor regulator, formerly YhcSR), responds to oxidation signals (O(2), H(2)O(2), NO, etc) by using a redox-active [2Fe-2S] cluster in the sensor kinase AirS. Mutagenesis studies demonstrate that the [2Fe-2S] cluster is essential for the kinase activity of AirS. We have also discovered that a homologue of IscS (SA1450) in S. aureus is active as a cysteine desulfurase, which enables the in vitro reconstitution of the [2Fe-2S] cluster in AirS. Phosphorylation assays show that the oxidized AirS with a [2Fe-2S](2+) cluster is the fully active form of the kinase but not the apo-AirS nor the reduced AirS possessing a [2Fe-2S](+) cluster. Overoxidation by prolonged exposure to O(2) or contact with H(2)O(2) or NO led to inactivation of AirS. Transcriptome analysis revealed that mutation of airR impacts the expression of ~355 genes under anaerobic conditions. Moreover, the mutant strain displayed increased resistance toward H(2)O(2), vancomycin, norfloxacin, and ciprofloxacin under anaerobic conditions. Together, our results show that S. aureus AirSR is a redox-dependent global regulatory system that plays important roles in gene regulation using a redox active Fe-S cluster under O(2)-limited conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Oxigênio/metabolismo , Staphylococcus aureus/metabolismo , Aerobiose , Anaerobiose , Farmacorresistência Bacteriana , Meio Ambiente , Peróxido de Hidrogênio/metabolismo , Cinética , Óxido Nítrico/metabolismo , Oxirredução , Análise Espectral , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia
19.
Anal Chem ; 82(4): 1292-8, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20104863

RESUMO

A dual-functionalized nanoprobe was designed for highly sensitive and selective in situ evaluation of carbohydrates on living cells by integrating the specific carbohydrate recognition and enzymatic signal amplification of proteins on Au nanoparticles. A nanoscaffold of nanohorns functionalized with arginine-glycine-aspartic acid-serine tetrapeptide was also prepared on an electrode surface for cell capture and enhancing the electrical connectivity. Combined with the nanoprobe and peptide-nanohorns, a highly sensitive electrochemical strategy was developed for cytosensing, which showed a detection limit down to 15 cells, broad dynamic range, acceptable rapidity, and low cost. The proposed method was further used for monitoring of dynamic variation of carbohydrate expression on cancer cells in response to drugs, which obviated the destruction or labeling of cells and the covalent tagging of lectin and enzyme. The one-pot conjugation of three components was very convenient and could be extended for preparation of other lectin-functionalized nanoprobes. Further development of this technique would contribute considerably to meeting the challenges in comprehensive understanding of the glycomic codes.


Assuntos
Metabolismo dos Carboidratos , Regulação da Expressão Gênica , Peroxidase do Rábano Silvestre/metabolismo , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Nanoestruturas/química , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Bovinos , Sobrevivência Celular , Concanavalina A/metabolismo , Impedância Elétrica , Eletroquímica , Estudos de Viabilidade , Regulação da Expressão Gênica/efeitos dos fármacos , Ouro/química , Humanos , Células K562 , Nanopartículas Metálicas/química , Especificidade por Substrato , Swainsonina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA