Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2400956, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635863

RESUMO

Photoactivable chemotherapy (PACT) using metallic complexes provides spatiotemporal selectivity over drug activation for targeted anticancer therapy. However, the poor absorption in near-infrared (NIR) light region of most metallic complexes renders tissue penetration challenging. Herein, an NIR light triggered dinuclear photoactivable Ru(II) complex (Ru2) is presented and the antitumor mechanism is comprehensively investigated. The introduction of a donor-acceptor-donor (D-A-D) linker greatly enhances the intramolecular charge transition, resulting in a high molar extinction coefficient in the NIR region with an extended triplet excited state lifetime. Most importantly, when activated by 700 nm NIR light, Ru2 exhibits unique slow photodissociation kinetics that facilitates synergistic photosensitization and photocatalytic activity to destroy diverse intracellular biomolecules. In vitro and in vivo experiments show that when activated by 700 nm NIR light, Ru2 exhibits nanomolar photocytotoxicity toward 4T1 cancer cells via the induction of calcium overload and endoplasmic reticulum (ER) stress. These findings provide a robust foundation for the development of NIR-activated Ru(II) PACT complexes for phototherapeutic application.

2.
Phys Chem Chem Phys ; 26(13): 10156-10167, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38495015

RESUMO

Organic photosensitizers (PSs) with aggregation-induced emission properties have great development potential in the integrated application of multi-mode diagnosis and treatment of photodynamic therapy (PDT) and photothermal therapy (PTT). However, preparing high-quality PSs with both optical and biological properties, high reactive oxygen species (ROS) and photothermal conversion ability are undoubtedly a great challenge. In this work, a series of pyridinium AIE PSs modified with benzophenone have been synthesized. A wide wavelength range of fluorescent materials was obtained by changing the conjugation and donor-acceptor strength. TPAPs5 has a significant advantage over similar compounds, and we have also identified the causes of high ROS generation and high photothermal conversion in terms of natural transition orbitals, excited state energy levels, ground-excited state configuration differences and recombination energy. Interestingly, migration of target sites was also found in biological imaging experiments, which also provided ideas for the design of double-targeted fluorescent probes. Therefore, the present work proposed an effective molecular design strategy for synergistic PDT and PTT therapy.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio , Neoplasias/tratamento farmacológico
3.
Luminescence ; 38(12): 2086-2094, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37740529

RESUMO

Light-mediated therapies such as photodynamic therapy (PDT) are considered emerging cancer treatment strategies. However, there are still lots of defect with common photosensitizers (PSs), such as short emission wavelength, weak photostability, poor cell permeability, and low PDT efficiency. Therefore, it is very important to develop high-performance PSs. Recently, luminogens with aggregation-induced emission (AIE) characteristics and red/near-infrared (NIR) emissive have been reported as promising PSs for image-guided cancer therapy, due to them being able to prevent autofluorescence in physiological environments, their enhanced fluorescence in the aggregated state, and generation of reactive oxygen species (ROS). Herein, we developed PSs named TBTCPM and MTBTCPM with donor-acceptor (D-A) structures, strong red/NIR, excellent targeting specificities to good cell permeability, and high photostability. Interestingly, both of them can efficiently generate ROS under white light irradiation and possess excellent killing effect on cancer cells. This study, thus, not only demonstrates applications in cell image-guided PDT cancer therapy performances but also provides strategy for construction of AIEgens with long emission wavelengths.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio , Neoplasias/tratamento farmacológico , Luz
4.
J Mater Chem B ; 11(34): 8182-8193, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37545413

RESUMO

Fluorescent dyes with aggregation-induced emission (AIE) characteristics have shown potential applications in the fields of biological imaging, photodynamic therapy and photothermal therapy, in which photosensitizers (PSs) play a crucial role. However, how to design high-quality PSs with high reactive oxygen species (ROS) generation efficiency remains unclear. In this contribution, an effective molecular design strategy to improve the ROS generation efficiency of AIE PSs was proposed. A series of tetraphenylethylene derivatives containing the pyridine ring or pyridinium with different substituents were designed and synthesized. All the molecules were weakly emissive when molecularly dissolved in solution but displayed intense emission upon aggregation, demonstrating a phenomenon of AIE characteristic. Pyridinium molecules could be used as visualization agents to specifically stain the mitochondria in living cells, while most of the molecules failed to generate ROS upon white light irradiation. In contrast, TPE-Pys-BP containing benzophenone produced ˙OH and 1O2 efficiently in the presence of light due to its large spin-orbit coupling constant to promote efficient intersystem crossing. Such a property allowed TPE-Pys-BP to serve as a PS to kill cancer cells using photodynamic therapy. TPE-Pys-BP also exhibited mechanochromic luminescence (ML), and its emission could be reversibly switched between two distinct colors through repeated grinding and fuming processes. A security paper was fabricated using the ML properties of TPE-Pys-BP.


Assuntos
Fotoquimioterapia , Humanos , Espécies Reativas de Oxigênio , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Células HeLa , Corantes Fluorescentes
5.
Chemistry ; 29(1): e202202677, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36250277

RESUMO

Tuning the redox potential of commonly available photocatalyst to improve the catalytic performance or expand its scope for challenging synthetic conversions is an ongoing demand in synthetic chemistry. Herein, the excited state properties and redox potential of commercially available [Ru(bpy)3 ]2+ photocatalyst were tuned by modifying the structure of the bipyridine ligands with electron-donating/withdrawing units. The visible-light-mediated photoredox phosphorylation of tertiary aliphatic amines was demonstrated under mild conditions. A series of cross-dehydrogenative coupling reactions were performed employing the RuII complexes as photocatalyst giving the corresponding α-aminophosphinoxides and α-aminophosphonates via carbon-phosphorus (C-P) bond formation.

6.
Angew Chem Int Ed Engl ; 61(23): e202202098, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35258153

RESUMO

Quantifying the content of metal-based anticancer drugs within single cancer cells remains a challenge. Here, we used single-cell inductively coupled plasma mass spectrometry to study the uptake and retention of mononuclear (Ir1) and dinuclear (Ir2) IrIII photoredox catalysts. This method allowed rapid and precise quantification of the drug in individual cancer cells. Importantly, Ir2 showed a significant synergism but not an additive effect for NAD(P)H photocatalytic oxidation. The lysosome-targeting Ir2 showed low dark toxicity in vitro and in vivo. Ir2 exhibited high photocatalytic therapeutic efficiency at 525 nm with an excellent photo-index in vitro and in tumor-bearing mice model. Interestingly, the photocatalytic anticancer profile of the dinuclear Ir2 was much better than the mononuclear Ir1, indicating for the first time that dinuclear metal-based photocatalysts can be applied for photocatalytic anticancer treatment.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Irídio/química , Lisossomos , Camundongos
7.
Chem Commun (Camb) ; 57(40): 4902-4905, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33870972

RESUMO

A bromine-substituted thermally activated delayed fluorescent (TADF) molecule AQCzBr2 is designed with both small singlet-triplet splitting (ΔEST) and increased spin-orbit coupling (SOC) to boost intersystem crossing (ISC) for singlet oxygen generation. AQCzBr2 nanoparticles (NPs) demonstrate high productivity of singlet oxygen generation (ΦΔ = 0.91) which allows highly efficient photodynamic therapy toward cancer cells.

8.
Talanta ; 206: 120177, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31514882

RESUMO

Two highly selective OFF-ON isomer fluorescent probes (1 and 2) for homo-/cysteine were designed and synthesized. The pyrene modified tetraphenylethylene derivative with AIE was used as luminescent group while maleimide was used as recognition group. These two isomer probes were found to be nearly nonfluorescent when treated with GSH. However, upon interaction with Cys or Hcy, the fluorescence was enhanced by 2000 folds in a wide pH range from 3 to 10. Experimental results and DFT calculation have demonstrated that the fluorescence OFF-ON switch of such thiol probes is resulted from the termination of the PET (photo-induced electron transfer) effect through the Michael addition reaction of maleimide unit and thiols. In addition, probe 1 and 2 exhibit excellent selectivity and sensitivity towards Cys, Hcy over GSH and other amino acids, which was confirmed by mass MS. We suggested that Michael addition reaction of these probes with GSH was prevented because of the stereo-hindrance effect. Furthermore, these two isomer probes were successfully used for imaging biothiols in living H1299 lung cancer cells.


Assuntos
Cisteína/análise , Corantes Fluorescentes/química , Glutationa/química , Homocisteína/análise , Linhagem Celular Tumoral , Cisteína/química , Teoria da Densidade Funcional , Fluorescência , Corantes Fluorescentes/síntese química , Homocisteína/química , Humanos , Maleimidas/síntese química , Maleimidas/química , Microscopia de Fluorescência/métodos , Modelos Químicos , Estilbenos/síntese química , Estilbenos/química
9.
Chemistry ; 20(19): 5815-20, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24664534

RESUMO

Iron fluoride cathodes have been attracting considerable interest due to their high electromotive force value of 2.7 V and their high theoretical capacity of 237 mA h g(-1) (1 e(-) transfer). In this study, uniform iron fluoride hollow porous microspheres have been synthesized for the first time by using a facile and scalable solution-phase route. These uniform porous and hollow microspheres show a high specific capacity of 210 mA h g(-1) at 0.1 C, and excellent rate capability (100 mA h g(-1) at 1 C) between 1.7 and 4.5 V versus Li/Li(+) . When in the range of 1.3 to 4.5 V, stable capacity was achieved at 350 mA h g(-1) at a current of 50 mA g(-1) .

10.
Dalton Trans ; 41(29): 8931-40, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22714817

RESUMO

The preparation of rhenium(I) tricarbonyl polypyridine complexes that show a strong absorption of visible light and long-lived triplet excited state and the application of these complexes as triplet photosensitizers for triplet-triplet annihilation (TTA) based upconversion are reported. Imidazole-fused phenanthroline was used as the N^N coordination ligand, on which different aryl groups were attached (Phenyl, Re-0; Coumarin, Re-1 and naphthyl, Re-2). Re-1 shows strong absorption of visible light (ε = 60,800 M(-1) cm(-1) at 473 nm). Both Re-1 and Re-2 show long-lived T(1) states (lifetime, τ(T), is up to 86.0 µs and 64.0 µs, respectively). These properties are in contrast to the weak absorption of visible light and short-lived triplet excited states of the normal rhenium(I) tricarbonyl polypyridine complexes, such as Re-0 (ε = 5100 M(-1) cm(-1) at 439 nm, τ(T) = 2.2 µs). The photophysical properties of the complexes were fully studied with steady state and time-resolved absorption and emission spectroscopes, as well as DFT calculations. The intra-ligand triplet excited state is proposed to be responsible for the exceptionally long-lived T(1) states of Re-1 and Re-2. The Re(I) complexes were used as triplet photosensitizers for TTA based upconversion and an upconversion quantum yield up to 17.0% was observed.


Assuntos
Complexos de Coordenação/química , Luz , Fármacos Fotossensibilizantes/química , Piridinas/química , Rênio/química , Complexos de Coordenação/síntese química , Imidazóis/química , Fármacos Fotossensibilizantes/síntese química , Teoria Quântica , Espectrofotometria Ultravioleta
11.
Chemistry ; 18(16): 4953-64, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22407570

RESUMO

Ru(II)-bis-pyridine complexes typically absorb below 450 nm in the UV spectrum and their molar extinction coefficients are only moderate (ε<16,000 M(-1) cm(-1)). Thus, Ru(II)-polyimine complexes that show intense visible-light absorptions are of great interest. However, no effective light-harvesting ruthenium(II)/organic chromophore arrays have been reported. Herein, we report the first visible-light-harvesting Ru(II)-coumarin arrays, which absorb at 475 nm (ε up to 63,300 M(-1) cm(-1), 4-fold higher than typical Ru(II)-polyimine complexes). The donor excited state in these arrays is efficiently converted into an acceptor excited state (i.e., efficient energy-transfer) without losses in the phosphorescence quantum yield of the acceptor. Based on steady-state and time-resolved spectroscopy and DFT calculations, we proposed a general rule for the design of Ru(II)-polypyridine-chromophore light-harvesting arrays, which states that the (1)IL energy level of the ligand must be close to the respective energy level of the metal-to-ligand charge-transfer (MLCT) states. Lower energy levels of (1)IL/(3)IL than the corresponding (1)MLCT/(3)MLCT states frustrate the cascade energy-transfer process and, as a result, the harvested light energy cannot be efficiently transferred to the acceptor. We have also demonstrated that the light-harvesting effect can be used to improve the upconversion quantum yield to 15.2 % (with 9,10-diphenylanthracene as a triplet-acceptor/annihilator), compared to the parent complex without the coumarin subunit, which showed an upconversion quantum yield of only 0.95 %.


Assuntos
Cumarínicos/química , Iminas/química , Compostos Organometálicos/química , Rutênio/química , Absorção , Luz , Medições Luminescentes , Estrutura Molecular , Fotoquímica , Teoria Quântica
12.
J Org Chem ; 76(22): 9294-304, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22007952

RESUMO

A colorimetric and ratiometric fluorescent thiol probe was devised with diketopyrrolopyrrole (DPP) fluorophore. The probe gives absorption and emission at 523 and 666 nm, respectively. In the presence of thiols, such as cysteine, the absorption and emission band shifted to 479 and 540 nm, respectively. Correspondingly, the color of the probe solution changed from purple to yellow, and the fluorescence changed from red to yellow. The emission intensity at 540 nm was enhanced by 140-fold. The Stokes shift of probe 1 (107 nm) is much larger than the unsubstituted DPP fluorophore (56 nm). Mass spectral analysis demonstrated that besides the expected Michael addition of thiols to the C═C bonds, the CN groups of the malonitrile moieties also react with thiols to form 4,5-dihydrothiazole structure. Probe 1 was used for fluorescence imaging of intracellular thiols. In the presence of thiols, both the green and red channel of the microscopy are active. With removal of the intracellular thiols, signal can only be detected through the red channel; thus, ratiometric bioimaging of intracellular thiols was achieved. The ratiometric response of probe 1 was rationalized by DFT calculations. Our complementary experimental and theoretical studies will be useful for design of ratiometric/colorimetric molecular probes.


Assuntos
Colorimetria/métodos , Corantes/química , Corantes Fluorescentes/química , Cetonas/química , Sondas Moleculares/química , Pirróis/química , Compostos de Sulfidrila/análise , Compostos de Sulfidrila/química , Modelos Teóricos , Estrutura Molecular , Teoria Quântica , Soluções , Espectrofotometria Ultravioleta
13.
Org Biomol Chem ; 9(10): 3844-53, 2011 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-21487590

RESUMO

Two highly selective OFF-ON green emitting fluorescent thiol probes (1 and 2) with intense absorption in the visible spectrum (molar extinction coefficient ε is up to 73 800 M(-1) cm(-1) at 509 nm) based on dyads of BODIPY (as electron donor of the photo-induced electron transfer, i.e.PET) and 2,4-dinitrobenzenesulfonyl (DNBS) (as electron acceptor of the PET process) were devised. The single crystal structures of the two probes were determined. The distance between the electron donor (BODIPY fluorophore) and the electron acceptor (DNBS) of probe 2 is larger than that of probe 1, as a result the contrast ratio (or the PET efficiency) of probe 2 is smaller than that of probe 1. However, fluorescence OFF-ON switching effects were observed for both probe 1 and probe 2 in the presence of cysteine (the emission enhancement is 300-fold for probe 1 and 54-fold for probe 2). The fluorescence OFF-ON sensing mechanism is rationalized by DFT/TDDFT calculations. We demonstrated with DFT calculations that DNBS is ca. 0.76 eV more potent to accept electrons than the maleimide moiety. The probes were used for fluorescent imaging of cellular thiols.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Compostos de Sulfidrila/análise , Sulfonamidas/química , Linhagem Celular , Cristalografia por Raios X , Escuridão , Dinitrofluorbenzeno/análogos & derivados , Dinitrofluorbenzeno/química , Transporte de Elétrons/efeitos da radiação , Corantes Fluorescentes/síntese química , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Espectrometria de Fluorescência , Compostos de Sulfidrila/química
14.
Biosens Bioelectron ; 26(6): 3012-7, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21195598

RESUMO

We have synthesized a styryl boron-dipyrromethene (BODIPY)/2,4-dinitrobenzenesulfonyl (DNBS) dyad based red-emitting molecular probe for specific detection of cysteine among the biological thiols. The probe shows intensive absorption at 556 nm and the probe is non-fluorescent. The DNBS moiety can be cleaved off by thiols, the red emission of the BODIPY fluorophore at 590 nm is switched on, with an emission enhancement of 46-fold. The probe shows good specificity toward cysteine over other biological molecules, such as glutathione and amino acids. The emission of the probe is pH-independent in the physiological pH range. The probe is used for fluorescent imaging of cellular thiols. Theoretical calculations based on density functional theory (DFT) were used to elucidate the fluorescence sensing mechanism of the probe, which indicate a dark excited state (S(1)) for the probe but an emissive excited state (S(1)) for the cleaved product (i.e. the fluorophore).


Assuntos
Técnicas Biossensoriais/métodos , Compostos de Boro , Cisteína/análise , Corantes Fluorescentes , Técnicas Biossensoriais/estatística & dados numéricos , Compostos de Boro/síntese química , Compostos de Boro/química , Dinitrofluorbenzeno/análogos & derivados , Dinitrofluorbenzeno/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Técnicas de Sonda Molecular , Sondas Moleculares/síntese química , Sondas Moleculares/química , Espectrometria de Fluorescência , Estirenos/química , Compostos de Sulfidrila/química
15.
Org Lett ; 12(12): 2876-9, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20499862

RESUMO

An OFF-ON red-emitting phosphorescent thiol probe is designed by using the (3)MLCT photophysics of Ru(II) complexes, i.e., with Ru(II) as the electron donor. The probe is non-luminescent because the MLCT is corrupted by electron transfer from Ru(II) to an intramolecular electron sink (2,4-dinitrobenzenesulfonyl). Thiols cleave the electron sink, and the MLCT is re-established. Phosphorescence at 598 nm was enhanced by 90-fold, with a 143 nm (5256 cm(-1)) Stokes shift and a 1.1 mus luminescent lifetime.


Assuntos
Corantes Fluorescentes/síntese química , Compostos Organometálicos/síntese química , Rutênio/química , Compostos de Sulfidrila/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes/química , Humanos , Luminescência , Estrutura Molecular , Compostos Organometálicos/química , Compostos de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA