Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 44(6): 1869-1884, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33459386

RESUMO

Iron (Fe) is an essential element for plant growth, development and metabolism. Due to its lack of solubility and low bioavailability in soil, Fe levels are usually far below the optimum amount for most plants' growth and development. In apple production, excessive use of nitrogen fertilizer may cause iron chlorosis symptoms in the newly growing leaves, but the regulatory mechanisms underlying this phenomenon are unclear. In this study, low nitrate (NO3- , LN) application alleviated the symptoms of Fe deficiency and promoted lower rhizosphere pH, which was beneficial for root Fe acquisition. At the same time, LN treatment increased citrate and abscisic acid accumulation in roots, which promoted Fe transport from root to shoot and maintained Fe homeostasis. Moreover, qRT-PCR analysis showed that nitrate application caused differential expression of genes related to Fe uptake and transport, as well as transcriptional regulators. In summary, our data reveal that low nitrate alleviated Fe deficiency through multiple pathways, demonstrating a new option for minimizing Fe deficiency by regulating the balance between nutrients.


Assuntos
Ferro/metabolismo , Malus/metabolismo , Nitratos/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Ácido Cítrico/farmacologia , Regulação da Expressão Gênica de Plantas , Homeostase , Concentração de Íons de Hidrogênio , Malus/efeitos dos fármacos , Malus/genética , Nitratos/farmacologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Rizosfera
2.
Plant Sci ; 297: 110526, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32563464

RESUMO

The accumulation of iron (Fe) in the apical meristem is considered as a critical factor involved in limiting the elongation of roots under low phosphate (Pi) conditions. Furthermore, the antagonism between Fe and Pi largely affects the effective utilization of Fe. Although the lack of Pi serves to increase the effectiveness of Fe in rice under both Fe-sufficient and Fe-deficient conditions, the underlying physiological mechanism governing this phenomenon is still unclear. In this study, we found that low Pi alleviated the Fe-deficiency phenotype in apples. Additionally, low Pi treatments increased ferric-chelated reductase (FCR) activity in the rhizosphere, promoted proton exocytosis, and enhanced the Fe concentration in both the roots and shoots. In contrast, high Pi treatments inhibited this process. Under conditions of low Pi, malate and citrate exudation from apple roots occurred under both Fe-sufficient and Fe-deficient conditions. In addition, treatment with 0.5 mM malate and citrate effectively alleviated the Fe and Pi deficiencies. Taken together, these data support the conclusion that a low Pi supply promotes organic acids exudation and enhances Fe absorption during Fe deficiency in apples.


Assuntos
Ácido Cítrico/metabolismo , Ferro/metabolismo , Malatos/metabolismo , Malus/metabolismo , Fosfatos/metabolismo , Antocianinas/metabolismo , Clorofila/metabolismo , Perfilação da Expressão Gênica , Deficiências de Ferro , Raízes de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Rizosfera , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA