Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Circ Res ; 130(10): 1586-1600, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35437018

RESUMO

BACKGROUND: Pathological cardiac hypertrophy is one of the leading causes of heart failure with highly complicated pathogeneses. The E3 ligase TRIM16 (tripartite motif-containing protein 16) has been recognized as a pivotal regulator to control cell survival, immune response, and oxidativestress. However, the role of Trim16 in cardiac hypertrophy is unknown. METHODS: We generated cardiac-specific knockout mice and adeno-associated virus serotype 9-Trim16 mice to evaluate the function of Trim16 in pathological myocardial hypertrophy. The direct effect of TRIM16 on cardiomyocyte enlargement was examined using an adenovirus system. Furthermore, we combined RNA-sequencing and interactome analysis that was followed by multiple molecular biological methodologies to identify the direct target and corresponding molecular events contributing to TRIM16 function. RESULTS: We found an intimate correlation of Trim16 expression with hypertrophy-related heart failure in both human and mouse. Our functional investigations and unbiased transcriptomic analyses clearly demonstrated that Trim16 deficiency markedly exacerbated cardiomyocyte enlargement in vitro and in transverse aortic constriction-induced cardiac hypertrophy mouse model, whereas Trim16 overexpression attenuated cardiac hypertrophy and remodeling. Mechanistically, Prdx1 (peroxiredoxin 1) is an essential target of Trim16 in cardiac hypertrophy. We found that Trim16 interacts with Prdx1 and inhibits its phosphorylation, leading to a robust enhancement of its downstream Nrf2 (nuclear factor-erythroid 2-related factor 2) pathway to block cardiac hypertrophy. Trim16-blocked Prdx1 phosphorylation was largely dependent on a direct interaction between Trim16 and Src and the resultant Src ubiquitinational degradation. Notably, Prdx1 knockdown largely abolished the anti-hypertrophic effects of Trim16 overexpression. CONCLUSIONS: Our findings provide the first evidence supporting Trim16 as a novel suppressor of pathological cardiac hypertrophy and indicate that targeting the Trim16-Prdx1 axis represents a promising therapeutic strategy for hypertrophy-related heart failure.


Assuntos
Cardiomegalia , Insuficiência Cardíaca , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Animais , Cardiomegalia/metabolismo , Modelos Animais de Doenças , Insuficiência Cardíaca/metabolismo , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética
2.
Respir Res ; 23(1): 90, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410227

RESUMO

BACKGROUND: Global distributions and trends of the risk-attributable burdens of chronic obstructive pulmonary disease (COPD) have rarely been systematically explored. To guide the formulation of targeted and accurate strategies for the management of COPD, we analyzed COPD burdens attributable to known risk factors. METHODS: Using detailed COPD data from the Global Burden of Disease study 2019, we analyzed disability-adjusted life years (DALYs), years lived with disability (YLDs), years of life lost (YLLs), and deaths attributable to each risk factor from 1990 to 2019. Additionally, we calculated estimated annual percentage changes (EAPCs) during the study period. The population attributable fraction (PAF) and summary exposure value (SEV) of each risk factor are also presented. RESULTS: From 1990 to 2019, the age-standardized DALY and death rates of COPD attributable to smoking and household air pollution, occupational particles, secondhand smoke, and low temperature presented consistently declining trends in almost all socio-demographic index (SDI) regions. However, the decline in YLD was not as dramatic as that of the death rate. In contrast, the COPD burden attributable to ambient particulate matter, ozone, and high temperature exposure showed undesirable increasing trends in the low- and low-middle-SDI regions. In addition, the age-standardized DALY and death rates attributable to each risk factor except household air pollution and low temperature were the highest in the low-middle-SDI region. In 2019, the COPD burden attributable to smoking ambient particulate matter, ozone, occupational particles, low and high temperature was obviously greater in males than in females. Meanwhile, the most important risk factors for female varied across regions (low- and low-middle-SDI regions: household air pollution; middle-SDI region: ambient particles; high-middle- and high-SDI region: smoking). CONCLUSIONS: Increasing trends of COPD burden attributable to ambient particulate matter, ozone, and high temperature exposure in the low-middle- and low-SDI regions call for an urgent need to implement specific and effective measures. Moreover, considering the gender differences in COPD burdens attributable to some risk factors such as ambient particulate matter and ozone with similar SEV, further research on biological differences between sexes in COPD and relevant policy-making of disease prevention are required.


Assuntos
Ozônio , Doença Pulmonar Obstrutiva Crônica , Feminino , Carga Global da Doença , Saúde Global , Humanos , Masculino , Material Particulado/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Anos de Vida Ajustados por Qualidade de Vida , Fatores de Risco
3.
Ann Med ; 54(1): 553-564, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35139697

RESUMO

RATIONALE: Aortic aneurysm (AA) is a serious condition that largely increases the risk of aortic dissection and sudden death. Exploring the global burden of disease and changes in risk factors for AA is essential for public health policy development. OBJECTIVE: To project the death burden from AA and its attributable risk factors in the following decade based on the epidemiological data over the past 30 years. METHODS AND RESULTS: We analysed the death burden of AA and trends of four risk factors from 1990-2019 using the updated 2019 Global Burden of Disease study database by Joinpoint regression analysis. Furthermore, we project the AA-related death burden for the next decade using the Bayesian age-period-cohort model. This study discovered that the global burden of death attributable to AA began to increase after decreasing for two decades. This upward trend will continue in the subsequent decade (average annual percent change: 0.318%, 95% CI: 0.288 to 0.348). Meanwhile, the disease burdens in all economic regions except high-middle socio-demographic index (SDI) regions will continuously increase in the next decade, with the fastest acceleration in the low-middle SDI region (average annual percent change: 1.183%, 95% CI: 1.166 to 1.200). Notably, high systolic blood pressure will surpass the contribution of smoking to become the most important risk factor for mortality due to AA. CONCLUSION: This study discovered a rebounding trend in the aortic aneurysm-related death burden globally. High systolic blood pressure will be the top risk factor attributed to death from AA. Therefore, it should be considered as the first-degree risk factor in the guidance of AA management and criteria for population-based screening programs.Key messagesThe death burden of aortic aneurysms is beginning to rebound globally, and the trend will continue for the next decade.High systolic blood pressure will replace smoking as the most important risk factor associated with aortic aneurysm death.


Assuntos
Aneurisma Aórtico , Carga Global da Doença , Aneurisma Aórtico/epidemiologia , Teorema de Bayes , Pressão Sanguínea , Saúde Global , Humanos , Anos de Vida Ajustados por Qualidade de Vida , Fatores de Risco
4.
Hepatology ; 74(6): 3018-3036, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34272738

RESUMO

BACKGROUND AND AIMS: NAFLD is the most prevalent chronic liver disease worldwide, but no effective pharmacological therapeutics are available for clinical use. NASH is the more severe stage of NAFLD. During this progress, dysregulation of endoplasmic reticulum (ER)-related pathways and proteins is one of the predominant hallmarks. We aimed to reveal the role of ring finger protein 5 (RNF5), an ER-localized E3 ubiquitin-protein ligase, in NASH and to explore its underlying mechanism. APPROACH AND RESULTS: We first inspected the expression level of RNF5 and found that it was markedly decreased in livers with NASH in multiple species including humans. We then introduced adenoviruses for Rnf5 overexpression or knockdown into primary mouse hepatocytes and found that palmitic acid/oleic acid (PAOA)-induced lipid accumulation and inflammation in hepatocytes were markedly attenuated by Rnf5 overexpression but exacerbated by Rnf5 gene silencing. Hepatocyte-specific Rnf5 knockout significantly exacerbated hepatic steatosis, inflammatory response, and fibrosis in mice challenged with diet-induced NASH. Mechanistically, we identified 3-hydroxy-3-methylglutaryl CoA reductase degradation protein 1 (HRD1) as a binding partner of RNF5 by systematic interactomics analysis. RNF5 directly bound to HRD1 and promoted its lysine 48 (K48)-linked and K33-linked ubiquitination and subsequent proteasomal degradation. Furthermore, Hrd1 overexpression significantly exacerbated PAOA-induced lipid accumulation and inflammation, and short hairpin RNA-mediated Hrd1 knockdown exerted the opposite effects. Notably, Hrd1 knockdown significantly diminished PAOA-induced lipid deposition, and up-regulation of related genes resulted from Rnf5 ablation in hepatocytes. CONCLUSIONS: These data indicate that RNF5 inhibits NASH progression by targeting HRD1 in the ubiquitin-mediated proteasomal pathway. Targeting the RNF5-HRD1 axis may provide insights into the pathogenesis of NASH and pave the way for developing strategies for NASH prevention and treatment.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Biópsia , Proteínas de Ligação a DNA/análise , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Hepatócitos , Humanos , Fígado/patologia , Masculino , Proteínas de Membrana/análise , Camundongos , Cultura Primária de Células , Mapeamento de Interação de Proteínas , Proteólise , RNA-Seq , Ubiquitina-Proteína Ligases/análise , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
5.
Hepatology ; 74(4): 2133-2153, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34133792

RESUMO

BACKGROUND AND AIMS: Hepatic ischemia/reperfusion (I/R) injury, a common clinical problem that occurs during liver surgical procedures, causes a large proportion of early graft failure and organ rejection cases. The identification of key regulators of hepatic I/R injury may provide potential strategies to clinically improve the prognosis of liver surgery. Here, we aimed to identify the role of tumor necrosis factor alpha-induced protein 3-interacting protein 3 (TNIP3) in hepatic I/R injury and further reveal its immanent mechanisms. APPROACH AND RESULTS: In the present study, we found that hepatocyte TNIP3 was markedly up-regulated in livers of both persons and mice subjected to I/R surgery. Hepatocyte-specific Tnip3 overexpression effectively attenuated I/R-induced liver necrosis and inflammation, but improved cell proliferation in mice, whereas TNIP3 ablation largely aggravated liver injury. This inhibitory effect of TNIP3 on hepatic I/R injury was found to be dependent on significant activation of the Hippo-YAP signaling pathway. Mechanistically, TNIP3 was found to directly interact with large tumor suppressor 2 (LATS2) and promote neuronal precursor cell-expressed developmentally down-regulated 4-mediated LATS2 ubiquitination, leading to decreased Yes-associated protein (YAP) phosphorylation at serine 112 and the activated transcription of factors downstream of YAP. Notably, adeno-associated virus delivered TNIP3 expression in the liver substantially blocked I/R injury in mice. CONCLUSIONS: TNIP3 is a regulator of hepatic I/R injury that alleviates cell death and inflammation by assisting ubiquitination and degradation of LATS2 and the resultant YAP activation.TNIP3 represents a promising therapeutic target for hepatic I/R injury to improve the prognosis of liver surgery.


Assuntos
Via de Sinalização Hippo/fisiologia , Hepatopatias , Proteínas Serina-Treonina Quinases/metabolismo , Traumatismo por Reperfusão , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Sinalização YAP/metabolismo , Animais , Proliferação de Células , Descoberta de Drogas , Hepatócitos/fisiologia , Humanos , Inflamação/metabolismo , Hepatopatias/metabolismo , Hepatopatias/prevenção & controle , Camundongos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Regulação para Cima
6.
Cell Metab ; 33(6): 1171-1186.e9, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33951476

RESUMO

Antihyperglycemic therapy is an important priority for the treatment of type 2 diabetes (T2D). Excessive hepatic glucose production (HGP) is a major cause of fasting hyperglycemia. Therefore, a better understanding of its regulation would be important to develop effective antihyperglycemic therapies. Using a gluconeogenesis-targeted kinome screening approach combined with transcriptome analyses, we uncovered Nemo-like kinase (NLK) as a potent suppressor of HGP. Mechanistically, NLK phosphorylates and promotes nuclear export of CRTC2 and FOXO1, two key regulators of hepatic gluconeogenesis, resulting in the proteasome-dependent degradation of the former and the inhibition of the self-transcriptional activity and expression of the latter. Importantly, the expression of NLK is downregulated in the liver of individuals with diabetes and in diabetic rodent models and restoring NLK expression in the mouse model ameliorates hyperglycemia. Therefore, our findings uncover NLK as a critical player in the gluconeogenic regulatory network and as a potential therapeutic target for T2D.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Proteína Forkhead Box O1/metabolismo , Quinase I-kappa B/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Fatores de Transcrição/metabolismo , Animais , Intolerância à Glucose , Células HEK293 , Humanos , Hiperglicemia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Hepatology ; 74(3): 1319-1338, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33894019

RESUMO

BACKGROUND AND AIMS: NAFLD has become the most common liver disease worldwide but lacks a well-established pharmacological therapy. Here, we aimed to investigate the role of an E3 ligase SH3 domain-containing ring finger 2 (SH3RF2) in NAFLD and to further explore the underlying mechanisms. METHODS AND RESULTS: In this study, we found that SH3RF2 was suppressed in the setting of NAFLD across mice, monkeys, and clinical individuals. Based on a genetic interruption model, we further demonstrated that hepatocyte SH3RF2 deficiency markedly deteriorates lipid accumulation in cultured hepatocytes and diet-induced NAFLD mice. Mechanistically, SH3RF2 directly binds to ATP citrate lyase, the primary enzyme promoting cytosolic acetyl-coenzyme A production, and promotes its K48-linked ubiquitination-dependent degradation. Consistently, acetyl-coenzyme A was significantly accumulated in Sh3rf2-knockout hepatocytes and livers compared with wild-type controls, leading to enhanced de novo lipogenesis, cholesterol production, and resultant lipid deposition. CONCLUSION: SH3RF2 depletion in hepatocytes is a critical aggravator for NAFLD progression and therefore represents a promising therapeutic target for related liver diseases.


Assuntos
Proteínas de Transporte/genética , Hepatócitos/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Proteínas Oncogênicas/genética , Ubiquitina-Proteína Ligases/genética , Animais , Colesterol/metabolismo , Hepatócitos/patologia , Humanos , Lipogênese/genética , Fígado/patologia , Macaca fascicularis , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo
8.
Biosci Rep ; 40(11)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32964914

RESUMO

AIM: The study aims to evaluate protective effects of sophoricoside (Sop) on cardiac hypertrophy. Meanwhile, the potential and significance of Sop should be broadened and it should be considered as an attractive drug for the treatment of pathological cardiac hypertrophy and heart failure. METHODS: Using the phenylephrine (PE)-induced neonatal rat cardiomyocytes (NRCMs) enlargement model, the potent protection of Sop against cardiomyocytes enlargement was evaluated. The function of Sop was validated in mice received transverse aortic coarctation (TAC) or sham surgery. At 1 week after TAC surgery, mice were treated with Sop for the following 4 weeks, the hearts were harvested after echocardiography examination. RESULTS: Our study revealed that Sop significantly mitigated TAC-induced heart dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis. Mechanistically, Sop treatment induced a remarkable activation of AMPK/mTORC1-autophagy cascade following sustained hypertrophic stimulation. Importantly, the protective effect of Sop was largely abolished by the AMPKα inhibitor Compound C, suggesting an AMPK activation-dependent manner of Sop function on suppressing pathological cardiac hypertrophy. CONCLUSION: Sop ameliorates cardiac hypertrophy by activating AMPK/mTORC1-mediated autophagy. Hence, Sop might be an attractive candidate for the treatment of pathological cardiac hypertrophy and heart failure.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Benzopiranos/farmacologia , Cardiomegalia/prevenção & controle , Ativadores de Enzimas/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Animais , Cardiomegalia/enzimologia , Cardiomegalia/patologia , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Ativação Enzimática , Fibrose , Masculino , Camundongos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley , Transdução de Sinais
9.
Hypertension ; 76(3): 827-838, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32683902

RESUMO

NOX5 (NADPH oxidase 5) is a homolog of the gp91phox subunit of the phagocyte NOX, which generates reactive oxygen species. NOX5 is involved in sperm motility and vascular contraction and has been implicated in diabetic nephropathy, atherosclerosis, and stroke. The function of NOX5 in the cardiac hypertrophy is unknown. Because NOX5 is a Ca2+-sensitive, procontractile NOX isoform, we questioned whether it plays a role in cardiac hypertrophy. Studies were performed in (1) cardiac tissue from patients undergoing heart transplant for cardiomyopathy and heart failure, (2) NOX5-expressing rat cardiomyocytes, and (3) mice expressing human NOX5 in a cardiomyocyte-specific manner. Cardiac hypertrophy was induced in mice by transverse aorta coarctation and Ang II (angiotensin II) infusion. NOX5 expression was increased in human failing hearts. Rat cardiomyocytes infected with adenoviral vector encoding human NOX5 cDNA exhibited elevated reactive oxygen species levels with significant enlargement and associated increased expression of ANP (atrial natriuretic peptides) and ß-MHC (ß-myosin heavy chain) and prohypertrophic genes (Nppa, Nppb, and Myh7) under Ang II stimulation. These effects were reduced by N-acetylcysteine and diltiazem. Pressure overload and Ang II infusion induced left ventricular hypertrophy, interstitial fibrosis, and contractile dysfunction, responses that were exaggerated in cardiac-specific NOX5 trangenic mice. These phenomena were associated with increased reactive oxygen species levels and activation of redox-sensitive MAPK (mitogen-activated protein kinase). N-acetylcysteine treatment reduced cardiac oxidative stress and attenuated cardiac hypertrophy in NOX5 trangenic. Our study defines Ca2+-regulated NOX5 as an important NOX isoform involved in oxidative stress- and MAPK-mediated cardiac hypertrophy and contractile dysfunction.


Assuntos
Acetilcisteína/farmacologia , Cardiomegalia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NADPH Oxidase 5/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Angiotensina II/farmacologia , Animais , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Sequestradores de Radicais Livres/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Isoenzimas/metabolismo , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fagócitos/enzimologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Vasoconstritores/farmacologia , Miosinas Ventriculares/metabolismo
10.
Cell Metab ; 31(5): 892-908.e11, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32375062

RESUMO

Nonalcoholic steatohepatitis (NASH) is becoming one of the leading causes of hepatocellular carcinoma (HCC). Sorafenib is the only first-line therapy for advanced HCC despite its serious adverse effects. Here, we report that at an equivalent of approximately one-tenth the clinical dose for HCC, sorafenib treatment effectively prevents the progression of NASH in both mice and monkeys without any observed significant adverse events. Mechanistically, sorafenib's benefit in NASH is independent of its canonical kinase targets in HCC, but involves the induction of mild mitochondrial uncoupling and subsequent activation of AMP-activated protein kinase (AMPK). Collectively, our findings demonstrate a previously unappreciated therapeutic effect and signaling mechanism of low-dose sorafenib treatment in NASH. We envision that this new therapeutic strategy for NASH has the potential to translate into a beneficial anti-NASH therapy with fewer adverse events than is observed in the drug's current use in HCC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Sorafenibe/farmacologia , Animais , Carcinoma Hepatocelular/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
11.
Cell Metab ; 31(4): 726-740.e8, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268115

RESUMO

Nonalcoholic steatohepatitis (NASH) is an unmet clinical challenge due to the rapid increase in its occurrence but the lack of approved drugs to treat it. Further unraveling of the molecular mechanisms underlying NASH may identify potential successful drug targets for this condition. Here, we identified TNFAIP3 interacting protein 3 (TNIP3) as a novel inhibitor of NASH. Hepatocyte-specific TNIP3 transgenic overexpression attenuates NASH in two dietary models in mice. Mechanistically, this inhibitory effect of TNIP3 is independent of its conventional role as an inhibitor of TNFAIP3. Rather, TNIP3 directly interacts with TAK1 and inhibits its ubiquitination and activation by the E3 ligase TRIM8 in hepatocytes in response to metabolic stress. Notably, adenovirus-mediated TNIP3 expression in the liver substantially blocks NASH progression in mice. These results suggest that TNIP3 may be a promising therapeutic target for NASH management.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado , MAP Quinase Quinase Quinases/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Proteínas de Transporte , Linhagem Celular , Humanos , Fígado/metabolismo , Fígado/patologia , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
12.
Hepatology ; 71(5): 1851-1864, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32012320

RESUMO

With dramatic changes in lifestyles over the last 20 years, nonalcoholic fatty liver disease (NAFLD) has become the most prevalent liver disorder in China but has not received sufficient attention. NAFLD-related advanced liver disease and its mortality along with its overall disease burden are expected to increase substantially. There is thus an imperative need to clarify the epidemiological features of NAFLD to guide a holistic approach to management. We summarize eight epidemiological features of NAFLD in China over the past two decades using systematic review and meta-analysis methodology. Our data reveal a rapid growth in the NAFLD population, especially among younger individuals. Importantly, there is a strong ethnic difference in body mass index (BMI) and genetic risk of NAFLD compared with the US population. The etiology of advanced liver disease and its complications (e.g., hepatocellular carcinoma) has been altered because of a Westernized lifestyle and the implementation of effective vaccination strategies against viral hepatitis. Regional epidemiological patterns of NAFLD indicate that economics, environment, and lifestyle are critical factors in disease progression. The analysis also indicates that a large number of patients remain undiagnosed and untreated because of the inadequacy of diagnostic tools and the absence of effective pharmacologic therapies. Given the burden of NAFLD, future policy and research efforts need to address knowledge gaps to mitigate the risk burden.


Assuntos
Efeitos Psicossociais da Doença , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Índice de Massa Corporal , China/epidemiologia , Saúde Holística , Humanos , Estilo de Vida , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/terapia , Prevalência , Fatores de Risco
13.
Hepatology ; 71(5): 1592-1608, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31529495

RESUMO

BACKGROUND AND AIMS: Although knowledge regarding the pathogenesis of nonalcoholic fatty liver disease (NAFLD) has profoundly grown in recent decades, the internal restrictive mechanisms remain largely unknown. We have recently reported that the transcription repressor interferon regulatory factor-2 binding protein 2 (IRF2BP2) is enriched in cardiomyocytes and inhibits pathological cardiac hypertrophy in mice. Notably, IRF2BP2 is abundantly expressed in hepatocytes and dramatically down-regulated in steatotic livers, whereas the role of IRF2BP2 in NAFLD is unknown. APPROACH AND RESULTS: Herein, using gain-of-function and loss-of-function approaches in mice, we demonstrated that while hepatocyte-specific Irf2bp2 knockout exacerbated high-fat diet-induced hepatic steatosis, insulin resistance and inflammation, hepatic Irf2bp2 overexpression protected mice from these metabolic disorders. Moreover, the inhibitory role of IRF2BP2 on hepatosteatosis is conserved in a human hepatic cell line in vitro. Combinational analysis of digital gene expression and chromatin immunoprecipitation sequencing identified activating transcription factor 3 (ATF3) to be negatively regulated by IRF2BP2 in NAFLD. Chromatin immunoprecipitation and luciferase assay substantiated the fact that IRF2BP2 is a bona fide transcription repressor of ATF3 gene expression via binding to its promoter region. Functional studies revealed that ATF3 knockdown significantly relieved IRF2BP2 knockout-exaggerated hepatosteatosis in vitro. CONCLUSION: IRF2BP2 is an integrative restrainer in controlling hepatic steatosis, insulin resistance, and inflammation in NAFLD through transcriptionally repressing ATF3 gene expression.


Assuntos
Fator 3 Ativador da Transcrição/genética , Regulação da Expressão Gênica , Hepatopatia Gordurosa não Alcoólica/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Mutação com Ganho de Função , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Inflamação/genética , Resistência à Insulina/genética , Mutação com Perda de Função , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/patologia , Fatores de Transcrição/genética , Células Tumorais Cultivadas
14.
Hepatology ; 70(4): 1119-1133, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31070259

RESUMO

With rapid lifestyle transitions, the increasing burden of nonalcoholic fatty liver disease (NAFLD) in China has emerged as a major public health issue. To obtain a comprehensive overview of the status of NAFLD over the past decade, we evaluated the epidemiology, risk factors, complications, and management of NAFLD in China through a systematic review and meta-analysis. Five English literature databases and three Chinese databases were searched for relevant topics from 2008 to 2018. A total of 392 studies with a population of 2,054,554 were included. National prevalence of NAFLD was 29.2%, with a heavier disease burden among the middle-aged, males, those in northwest China and Taiwan, regions with a gross domestic product per capita greater than 100,000 yuan, and Uygur and Hui ethnic groups. Currently, original studies on natural history and complications of NAFLD in China are scarce. Several studies revealed that NAFLD is positively correlated with the incidence of extrahepatic tumors, diabetes, cardiovascular disease and metabolic syndrome. The Chinese population may have a higher hereditary risk of NAFLD due to more frequent nonsynonymous mutations in genes regulating lipid metabolism. Ultrasonography is the primary imaging tool in the detection of NAFLD in China. Serum tests and risk stratification algorithms for staging NAFLD remain under investigation. Specific pharmaceutical treatments for NAFLD are still undergoing clinical trials. It is noteworthy that the Chinese are underrepresented compared with their proportion of the NAFLD population in such trials. Conclusion: China experienced an unexpected rapid increase in the burden of NAFLD over a short period. Rising awareness and urgent actions need to be taken in order to control the NAFLD pandemic in China.


Assuntos
Surtos de Doenças/estatística & dados numéricos , Cirrose Hepática/epidemiologia , Neoplasias Hepáticas/epidemiologia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Adulto , Distribuição por Idade , Idoso , China/epidemiologia , Efeitos Psicossociais da Doença , Feminino , Humanos , Incidência , Cirrose Hepática/fisiopatologia , Neoplasias Hepáticas/fisiopatologia , Masculino , Pessoa de Meia-Idade , Prevalência , Índice de Gravidade de Doença , Distribuição por Sexo
15.
Nat Med ; 24(2): 213-223, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29291351

RESUMO

Nonalcoholic steatohepatitis (NASH) is a common clinical condition that can lead to advanced liver diseases. Lack of effective pharmacotherapies for NASH is largely attributable to an incomplete understanding of its pathogenesis. The deubiquitinase cylindromatosis (CYLD) plays key roles in inflammation and cancer. Here we identified CYLD as a suppressor of NASH in mice and in monkeys. CYLD is progressively degraded upon interaction with the E3 ligase TRIM47 in proportion to NASH severity. We observed that overexpression of Cyld in hepatocytes concomitantly inhibits lipid accumulation, insulin resistance, inflammation and fibrosis in mice with NASH induced in an experimental setting. Mechanistically, CYLD interacts directly with the kinase TAK1 and removes its K63-linked polyubiquitin chain, which blocks downstream activation of the JNK-p38 cascades. Notably, reconstitution of hepatic CYLD expression effectively reverses disease progression in mice with dietary or genetically induced NASH and in high-fat diet-fed monkeys predisposed to metabolic syndrome. Collectively, our findings demonstrate that CYLD mitigates NASH severity and identify the CYLD-TAK1 axis as a promising therapeutic target for management of the disease.


Assuntos
Cisteína Endopeptidases/genética , Inflamação/genética , MAP Quinase Quinase Quinases/genética , Hepatopatia Gordurosa não Alcoólica/genética , Animais , Proteínas de Transporte/genética , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Enzima Desubiquitinante CYLD , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Haplorrinos , Humanos , Inflamação/fisiopatologia , Fígado/metabolismo , Fígado/patologia , MAP Quinase Quinase 4/genética , MAP Quinase Quinase Quinases/química , MAP Quinase Quinase Quinases/metabolismo , Síndrome Metabólica/genética , Síndrome Metabólica/patologia , Camundongos , Proteínas de Neoplasias/genética , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Proteínas Nucleares/genética , Ligação Proteica/genética , Índice de Gravidade de Doença , Transdução de Sinais/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
16.
Nat Med ; 24(1): 84-94, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29227477

RESUMO

Activation of apoptosis signal-regulating kinase 1 (ASK1) in hepatocytes is a key process in the progression of nonalcoholic steatohepatitis (NASH) and a promising target for treatment of the condition. However, the mechanism underlying ASK1 activation is still unclear, and thus the endogenous regulators of this kinase remain open to be exploited as potential therapeutic targets. In screening for proteins that interact with ASK1 in the context of NASH, we identified the deubiquitinase tumor necrosis factor alpha-induced protein 3 (TNFAIP3) as a key endogenous suppressor of ASK1 activation, and we found that TNFAIP3 directly interacts with and deubiquitinates ASK1 in hepatocytes. Hepatocyte-specific ablation of Tnfaip3 exacerbated nonalcoholic fatty liver disease- and NASH-related phenotypes in mice, including glucose metabolism disorders, lipid accumulation and enhanced inflammation, in an ASK1-dependent manner. In contrast, transgenic or adeno-associated virus-mediated TNFAIP3 gene delivery in the liver in both mouse and nonhuman primate models of NASH substantially blocked the onset and progression of the disease. These results implicate TNFAIP3 as a functionally important endogenous suppressor of ASK1 hyperactivation in the pathogenesis of NASH and identify it as a potential new molecular target for NASH therapy.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fígado/enzimologia , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Animais , Apoptose , Dieta Hiperlipídica , Fibrose/prevenção & controle , Humanos , Inflamação/prevenção & controle , Resistência à Insulina , Camundongos , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Transdução de Sinais , Ubiquitinação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
J Neurosci ; 37(50): 12123-12140, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29114077

RESUMO

Stroke is one of the leading causes of morbidity and mortality worldwide. Inflammation, oxidative stress, apoptosis, and excitotoxicity contribute to neuronal death during ischemic stroke; however, the mechanisms underlying these complicated pathophysiological processes remain to be fully elucidated. Here, we found that the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6) was markedly increased after cerebral ischemia/reperfusion (I/R) in mice. TRAF6 ablation in male mice decreased the infarct volume and neurological deficit scores and decreased proinflammatory signaling, oxidative stress, and neuronal death after cerebral I/R, whereas transgenic overexpression of TRAF6 in male mice exhibited the opposite effects. Mechanistically, we demonstrated that TRAF6 induced Rac1 activation and consequently promoted I/R injury by directly binding and ubiquitinating Rac1. Either functionally mutating the TRAF6 ubiquitination site on Rac1 or inactivating Rac1 with a specific inhibitor reversed the deleterious effects of TRAF6 overexpression during I/R injury. In conclusion, our study demonstrated that TRAF6 is a key promoter of ischemic signaling cascades and neuronal death after cerebral I/R injury. Therefore, the TRAF6/Rac1 pathway might be a promising target to attenuate cerebral I/R injury.SIGNIFICANCE STATEMENT Stroke is one of the most severe and devastating neurological diseases globally. The complicated pathophysiological processes restrict the translation of potential therapeutic targets into medicine. Further elucidating the molecular mechanisms underlying cerebral ischemia/reperfusion injury may open a new window for pharmacological interventions to promote recovery from stroke. Our study revealed that ischemia-induced tumor necrosis factor receptor-associated factor 6 (TRAF6) upregulation binds and ubiquitinates Rac1 directly, which promotes neuron death through neuroinflammation and neuro-oxidative signals. Therefore, precisely targeting the TRAF6-Rac1 axis may provide a novel therapeutic strategy for stroke recovery.


Assuntos
Infarto da Artéria Cerebral Média/enzimologia , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Traumatismo por Reperfusão/enzimologia , Fator 6 Associado a Receptor de TNF/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , Estresse Oxidativo , RNA Interferente Pequeno/farmacologia , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/genética , Transfecção , Ubiquitinação , Regulação para Cima
18.
Nat Med ; 23(6): 742-752, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28481357

RESUMO

Non-alcoholic steatohepatitis (NASH) is an increasingly prevalent liver pathology that can progress from non-alcoholic fatty liver disease (NAFLD), and it is a leading cause of cirrhosis and hepatocellular carcinoma. There is currently no pharmacological therapy for NASH. Defective lysosome-mediated protein degradation is a key process that underlies steatohepatitis and a well-recognized drug target in a variety of diseases; however, whether it can serve as a therapeutic target for NAFLD and NASH remains unknown. Here we report that transmembrane BAX inhibitor motif-containing 1 (TMBIM1) is an effective suppressor of steatohepatitis and a previously unknown regulator of the multivesicular body (MVB)-lysosomal pathway. Tmbim1 expression in hepatocytes substantially inhibited high-fat diet-induced insulin resistance, hepatic steatosis and inflammation in mice. Mechanistically, Tmbim1 promoted the lysosomal degradation of toll-like receptor 4 by cooperating with the ESCRT endosomal sorting complex to facilitate MVB formation, and the ubiquitination of Tmbim1 by the E3 ubiquitin ligase Nedd4l was required for this process. We also found that overexpression of Tmbim1 in the liver effectively inhibited a severe form of NAFLD in mice and NASH progression in monkeys. Taken together, these findings could lead to the development of promising strategies to treat NASH by targeting MVB regulators to properly orchestrate the lysosome-mediated protein degradation of key mediators of the disease.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Membrana/metabolismo , Corpos Multivesiculares/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptor 4 Toll-Like/metabolismo , Adolescente , Adulto , Animais , Western Blotting , Citocinas/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Feminino , Imunofluorescência , Células HEK293 , Células HeLa , Humanos , Imuno-Histoquímica , Lisossomos/metabolismo , Macaca fascicularis , Masculino , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Ubiquitina-Proteína Ligases Nedd4 , Reação em Cadeia da Polimerase , Tomografia por Emissão de Pósitrons , Células RAW 264.7 , Ubiquitina-Proteína Ligases/metabolismo , Adulto Jovem
19.
Nat Med ; 23(4): 439-449, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28218919

RESUMO

Nonalcoholic steatohepatitis (NASH) is a progressive disease that is often accompanied by metabolic syndrome and poses a high risk of severe liver damage. However, no effective pharmacological treatment is currently available for NASH. Here we report that CASP8 and FADD-like apoptosis regulator (CFLAR) is a key suppressor of steatohepatitis and its metabolic disorders. We provide mechanistic evidence that CFLAR directly targets the kinase MAP3K5 (also known as ASK1) and interrupts its N-terminus-mediated dimerization, thereby blocking signaling involving ASK1 and the kinase MAPK8 (also known as JNK1). Furthermore, we identified a small peptide segment in CFLAR that effectively attenuates the progression of steatohepatitis and metabolic disorders in both mice and monkeys by disrupting the N-terminus-mediated dimerization of ASK1 when the peptide is expressed from an injected adenovirus-associated virus 8-based vector. Taken together, these findings establish CFLAR as a key suppressor of steatohepatitis and indicate that the development of CFLAR-peptide-mimicking drugs and the screening of small-molecular inhibitors that specifically block ASK1 dimerization are new and feasible approaches for NASH treatment.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Fígado/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Adolescente , Adulto , Animais , Biópsia , Glicemia/metabolismo , Dependovirus , Dimerização , Feminino , Técnicas de Introdução de Genes , Vetores Genéticos , Hepatócitos/metabolismo , Humanos , Imuno-Histoquímica , Imunoprecipitação , Resistência à Insulina/genética , Interleucina-6/metabolismo , Fígado/diagnóstico por imagem , Fígado/patologia , Macaca fascicularis , Masculino , Camundongos , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Tomografia por Emissão de Pósitrons , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Ultrassonografia , Adulto Jovem
20.
Nat Commun ; 7: 11267, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27249171

RESUMO

Tumour necrosis factor receptor-associated factor 6 (TRAF6) is a ubiquitin E3 ligase that regulates important biological processes. However, the role of TRAF6 in cardiac hypertrophy remains unknown. Here, we show that TRAF6 levels are increased in human and murine hypertrophied hearts, which is regulated by reactive oxygen species (ROS) production. Cardiac-specific Traf6 overexpression exacerbates cardiac hypertrophy in response to pressure overload or angiotensin II (Ang II) challenge, whereas Traf6 deficiency causes an alleviated hypertrophic phenotype in mice. Mechanistically, we show that ROS, generated during hypertrophic progression, triggers TRAF6 auto-ubiquitination that facilitates recruitment of TAB2 and its binding to transforming growth factor beta-activated kinase 1 (TAK1), which, in turn, enables the direct TRAF6-TAK1 interaction and promotes TAK1 ubiquitination. The binding of TRAF6 to TAK1 and the induction of TAK1 ubiquitination and activation are indispensable for TRAF6-regulated cardiac remodelling. Taken together, we define TRAF6 as an essential molecular switch leading to cardiac hypertrophy in a TAK1-dependent manner.


Assuntos
Cardiomegalia/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Animais Recém-Nascidos , Cardiomegalia/genética , Cardiomegalia/patologia , Células Cultivadas , Células HEK293 , Humanos , MAP Quinase Quinase Quinases/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Ligação Proteica , Ratos Sprague-Dawley , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA