Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 22(10)2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39452857

RESUMO

To reveal potent ACE inhibitors, researchers screen various bioactive peptides from several sources, and more attention has been given to aquatic sources. This review summarizes the recent research achievements on marine peptides with ACE-inhibitory action and application. Marine peptides are considered excellent bioactives due to their large structural diversity and unusual bioactivities. The mechanisms by which these marine peptides inhibit ACE include competitive binding to ACEs' active site, interfering with ACE conformational changes, and avoiding the identification of substrates. The unique 3D attributes of marine peptides confer inhibition advantages toward ACE activity. Because IC50 values of marine peptides' interaction with ACE are low, structure-based research assumes that the interaction between ACE and peptides increased the therapeutic application. Numerous studies on marine peptides focused on the sustainable extraction of ACE-inhibitory peptides produced from several fish, mollusks, algae, and sponges. Meanwhile, their potential applications and medical benefits are worth investigating and considering. Due to these peptides exhibiting antioxidant, antihypertensive, and even antimicrobial properties simultaneously, their therapeutic potential for cardiovascular disease and other illnesses only increases. In addition, as marine peptides show better pharmacological benefits, they have increased absorption rates and low toxicity and could perhaps be modified for better stability and bioefficacy. Biotechnological advances in peptide synthesis and formulation have greatly facilitated the generation of peptide-based ACE inhibitors from marine sources, which subsequently offer new treatment models. This article gives a complete assessment of the present state of knowledge about marine organism peptides as ACE inhibitors. In addition, it emphasizes the relevance of additional investigation into their mechanisms of action, the optimization of manufacturing processes, and assessment in in vivo, preclinical, and clinical settings, underlining the urgency and value of this study. Using marine peptides for ACE inhibition not only broadens the repertory of bioactive compounds but also shows promise for tackling the global health burden caused by cardiovascular diseases.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Organismos Aquáticos , Peptídeos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Animais , Humanos , Peptídeos/farmacologia , Peptídeos/química , Peptidil Dipeptidase A/metabolismo
2.
J Med Food ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382491

RESUMO

Saxidomus purpurata extract (SPE) is a highly consumable seafood worldwide with known health-related benefits. However, there are no reports of its' anti-obesity effect. This study explores the potential of SPE for anti-obesity effects by modulating adipogenesis and lipolysis. SPE reduced intracellular lipid and triglyceride accumulation while increasing free glycerol release in adipocytes. SPE inhibited lipogenesis protein expressions and increased the phosphorylation of hormone-sensitive lipase and Adenosine monophosphate-activated protein kinase (AMPK) to promote lipolysis. In addition, SPE suppressed adipogenesis by downregulating protein expression of key adipogenic markers, peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1) via Wnt/ß-catenin signaling. SPE augmented the heme oxygenase-1 (HO-1) expression. Thus, pharmacological intervention with Zinc protoporphyrin (ZnPP-HO-1 antagonist) was employed to validate the HO-1 role. The presence of ZnPP increased the lipid accumulation and reduced the free glycerol release. At the molecular level, adipogenic transcription factors (PPARγ, C/EBPα, and SREBP1) expressions were restored in the presence of ZnPP. GC-MS analysis revealed that SPE was comprised of several fatty acids, contributing to its anti-obesity activity. SPE is an effective nutraceutical that can be used to reduce the progression of obesity. HO-1 expression during adipogenesis might be the mechanism of action for the anti-obesity effect of SPE.

3.
J Neurosurg Pediatr ; : 1-8, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39213660

RESUMO

OBJECTIVE: Hydrocephalus is one of the neurological risks occurring in patients with achondroplasia. Ventriculoperitoneal shunt (VPS) insertion is the most common treatment. However, reports of successful endoscopic third ventriculostomy (ETV) suggest that ETV may be a good alternative to VPS insertion in achondroplasia. However, it has been stated that ETV in achondroplasia patients is technically demanding to perform. The current study examined the anatomical variations of the third ventricle and the brainstem in achondroplasia patients and correlated the findings with the difficulty of performing ETV. METHODS: A retrospective analysis of 51 patients with achondroplasia and 138 hydrocephalus patients without achondroplasia (48 patients had tumor-related hydrocephalus and 90 patients had hydrocephalus of nontumorous origin) who have visited the authors' institution since 2012 was performed. Preoperative T2-weighted sagittal MR images were used to measure α (steepness of the third ventricle floor), ß (endoscopic angle of incidence), d1 (vertical distance between the dorsum sellae and basilar bifurcation), and d2 (horizontal distance between the dorsum sellae and basilar artery). Each value was compared using the Tukey multicomparison test. RESULTS: Achondroplasia patients showed significantly smaller α (p < 0.001) and ß (p < 0.001) angles, while there were no significant differences between the control groups (p = 0.947 for α, p = 0.836 for ß). The d1 value was significantly larger in achondroplasia patients (p < 0.001), and d2 was smaller (p < 0.001). The control groups showed similar d1 and d2 values (p = 0.415 for d1, p = 0.154 for d2). Smaller α and ß values meant that in achondroplasia patients the third ventricle floor stood more vertically than in other patients with hydrocephalus, and the endoscopic contact angles were small, increasing the risk of ventriculostomy devices slipping down into the infundibular recess. Additionally, a large d1 meant that the basilar artery was shifted upward and a small d2 indicated that the basilar artery was located closer to the dorsum sellae, potentially increasing the risk of basilar artery damage. CONCLUSIONS: Achondroplasia patients' skull and brain anatomies were significantly different from those of other hydrocephalus patients, with steeper third ventricle floors and basilar arteries closer to the dorsum sellae. Because these anatomical differences lead to difficulties in performing ETVs in achondroplasia patients, such differences should be considered when ETV is planned for the patients.

5.
Nat Commun ; 15(1): 4052, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744820

RESUMO

Obesity has emerged as a prominent risk factor for the development of malignant tumors. However, the existing literature on the role of adipocytes in the tumor microenvironment (TME) to elucidate the correlation between obesity and cancer remains insufficient. Here, we aim to investigate the formation of cancer-associated adipocytes (CAAs) and their contribution to tumor growth using mouse models harboring dysfunctional adipocytes. Specifically, we employ adipocyte-specific BECN1 KO (BaKO) mice, which exhibit lipodystrophy due to dysfunctional adipocytes. Our results reveal the activation of YAP/TAZ signaling in both CAAs and BECN1-deficient adipocytes, inducing adipocyte dedifferentiation and formation of a malignant TME. The additional deletion of YAP/TAZ from BaKO mice significantly restores the lipodystrophy and inflammatory phenotypes, leading to tumor regression. Furthermore, mice fed a high-fat diet (HFD) exhibit decreased BECN1 and increased YAP/TAZ expression in their adipose tissues. Treatment with the YAP/TAZ inhibitor, verteporfin, suppresses tumor progression in BaKO and HFD-fed mice, highlighting its efficacy against mice with metabolic dysregulation. Overall, our findings provide insights into the key mediators of CAA and their significance in developing a TME, thereby suggesting a viable approach targeting adipocyte homeostasis to suppress cancer growth.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Adipócitos , Dieta Hiperlipídica , Camundongos Knockout , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Microambiente Tumoral , Proteínas de Sinalização YAP , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Adipócitos/metabolismo , Adipócitos/patologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Dieta Hiperlipídica/efeitos adversos , Progressão da Doença , Lipodistrofia/metabolismo , Lipodistrofia/patologia , Lipodistrofia/genética , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Obesidade/metabolismo , Obesidade/patologia , Transdução de Sinais , Transativadores/metabolismo , Transativadores/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Verteporfina/farmacologia , Proteínas de Sinalização YAP/metabolismo
6.
J Antibiot (Tokyo) ; 77(7): 466-470, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38724631

RESUMO

Three new nonenes, verrucanonenes A‒C (1‒3), were isolated from culture broth of marine-derived fungus Albifimbria verrucaria. These compounds were isolated using silica gel column chromatography, reversed-phase medium pressure liquid chromatography, Sephadex LH-20 column chromatography, and preparative HPLC. Their structures were determined using a spectroscopic method. Cytotoxicities of these isolated compounds to A549, DU145, HCT116, and HT1080 cancer cell lines were assessed. Compounds 1‒3 exhibited cytotoxicities to DU145 cancer cell line, with IC50 values of 23.4, 28.6, and 20.1 µM, respectively. Compound 2 decreased H1N1-induced cytopathic effects on MDCK cells in a dose-dependent manner.


Assuntos
Antineoplásicos , Antivirais , Humanos , Antivirais/farmacologia , Antivirais/isolamento & purificação , Antivirais/química , Linhagem Celular Tumoral , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Cães , Células Madin Darby de Rim Canino , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Ascomicetos/química , Concentração Inibidora 50 , Cromatografia Líquida de Alta Pressão , Estrutura Molecular , Relação Dose-Resposta a Droga
7.
Int J Biol Macromol ; 255: 128047, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37956810

RESUMO

The design and development of wound dressing with antioxidant and antibacterial properties to accelerate wound healing remain challenging. In this study, we synthesize a chitooligosaccharide-gentisic acid (COS-GSA) conjugate using the free-radical grafting method, and fabricate a poly(vinyl alcohol) (PVA)/chitosan (CH)/COS-GSA (PVA/CH/CG) hydrogel using a freeze-thaw method. We characterize the synthesized COS-GSA conjugates using through polyphenol assay, absorbance, and 1H NMR spectroscopy and evaluate their antioxidant properties. The COS-GSA conjugates are successfully synthesized and exhibit better antioxidant properties than pristine COSs. Subsequently, the fabricated hydrogel is characterized based on its morphological analysis, rheological properties, water contact angle, swelling, degradation, water retention properties, and COS-GSA release profiles. Finally, the biocompatibility of the fabricated hydrogel is evaluated on HDF and HaCaT cells through indirect and direct cytotoxicity. The PVA/CH/CG hydrogel exhibited significantly higher antioxidant properties (DPPH, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and hydrogen peroxide (H2O2) scavenging activities) and antibacterial activities (Staphylococcus aureus and Pseudomonas aeruginosa) compared to other fabricated hydrogels such as PVA, PVA/CH, and PVA/CH/COS (PVA/CH/C). These results provide evidence that PVA/CH/CG hydrogels with antioxidant, antibacterial, and non-cytotoxic properties have great potential for wound-dressing applications.


Assuntos
Quitosana , Quitosana/química , Antioxidantes/farmacologia , Álcool de Polivinil/química , Hidrogéis/química , Peróxido de Hidrogênio , Antibacterianos/farmacologia , Antibacterianos/química , Bandagens , Água , Etanol
8.
Food Chem ; 407: 135130, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36527945

RESUMO

In this study, seahorse peptide (SHP) was isolated from an alcalase-treated hydrolysate from Hippocampus abdominalis and assessed for its antioxidant potential against AAPH-induced oxidative stress damage. AAPH stimulation significantly decreased cell viability and increased intracellular reactive oxygen species (ROS) production in Vero cells. SHP treatment increased cell viability and remarkably lowered ROS production under AAPH-induced oxidative stress. Furthermore, it protected against AAPH-induced apoptotic DNA damage. Western blot analysis demonstrated that SHP treatment remarkably increased the protein expression levels of catalase and SOD in AAPH-induced Vero cells. A zebrafish study revealed that SHP-treated zebrafish embryos resulted in lower cell death, ROS generation, and lipid peroxidation than the AAPH-treated group. These results suggest that SHP is a potent functional antioxidant that could be developed as a natural antioxidant in the food and functional food industries.


Assuntos
Antioxidantes , Smegmamorpha , Animais , Chlorocebus aethiops , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Células Vero , Smegmamorpha/genética , Smegmamorpha/metabolismo , Estresse Oxidativo , Peptídeos/farmacologia , Peptídeos/metabolismo
9.
Curr Issues Mol Biol ; 44(11): 5815-5826, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36421679

RESUMO

Sargassum horneri is a seaweed species with diverse bioactivities. However, its antifibrotic effects during nasal polyp (NP) formation are not clearly understood. Therefore, we investigated the inhibitory effect of S. horneri on fibrosis progression in NP-derived fibroblasts (NPDFs) and NP tissues ex vivo. NPDFs were stimulated with TGF-ß1 in the presence or absence of S. horneri ethanol extract (SHE). The extracellular matrix (ECM) protein production levels, myofibroblast differentiation (α-smooth muscle actin, α-SMA), and phosphorylation of Smad 2/3 and -ERK in TGF-ß1-stimulated NPDFs were investigated using western blotting. Further, the contractile activity of SHE was assessed by performing a collagen gel contraction assay. The expression levels of collagen-1, fibronectin, and α-SMA were investigated in NP organ cultures treated with SHE. TGF-ß1 stimulated ECM protein expression, myofibroblast differentiation, and collagen contractile activity while these were attenuated by pretreatment with SHE. We also found antifibrotic effect of SHE on ex vivo NP tissues. The antifibrotic effects of SHE were modulated through the attenuation of Smad 2/3 and ERK signaling pathways in TGF-ß1-stimulated NPDFs. In conclusion, SHE inhibited ECM protein accumulation and myofibroblast differentiation during NP remodeling. Thus, SHE may be helpful as a treatment for NP recurrence after endoscopic sinus surgery.

10.
Mar Drugs ; 20(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35736156

RESUMO

The aim of this study was to assess the potential hypertensive effects of the IGTGIPGIW peptide purified from Hippocampus abdominalis alcalase hydrolysate (HA) for application in the functional food industry. We investigated the antihypertensive effects of IGTGIPGIW in vitro by assessing nitric oxide production in EA.hy926 endothelial cells, which is a major factor affecting vasorelaxation. The potential vasorelaxation effect was evaluated using 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, a fluorescent stain. IGTGIPGIW significantly increased the expression of endothelial-derived relaxing factors, including endothelial nitric oxide synthase and protein kinase B, in EA.hy926 cells. Furthermore, oral administration of IGTGIPGIW significantly lowered the systolic blood pressure (183.60 ± 1.34 mmHg) and rapidly recovered the diastolic blood pressure (143.50 ± 5.55 mmHg) in the spontaneously hypertensive rat model in vivo. Our results demonstrate the antihypertensive activity of the IGTGIPGIW peptide purified from H. abdominalis and indicate its suitability for application in the functional food industry.


Assuntos
Anti-Hipertensivos , Óxido Nítrico Sintase Tipo III , Smegmamorpha , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea , Células Endoteliais , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Endogâmicos SHR
11.
Cell Metab ; 34(3): 458-472.e6, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35021043

RESUMO

In mammals, white adipose tissues are largely divided into visceral epididymal adipose tissue (EAT) and subcutaneous inguinal adipose tissue (IAT) with distinct metabolic properties. Although emerging evidence suggests that subpopulations of adipose stem cells (ASCs) would be important to explain fat depot differences, ASCs of two fat depots have not been comparatively investigated. Here, we characterized heterogeneous ASCs and examined the effects of intrinsic and tissue micro-environmental factors on distinct ASC features. We demonstrated that ASC subpopulations in EAT and IAT exhibited different molecular features with three adipogenic stages. ASC transplantation experiments revealed that intrinsic ASC features primarily determined their adipogenic potential. Upon obesogenic stimuli, EAT-specific SDC1+ ASCs promoted fibrotic remodeling, whereas IAT-specific CXCL14+ ASCs suppressed macrophage infiltration. Moreover, IAT-specific BST2high ASCs exhibited a high potential to become beige adipocytes. Collectively, our data broaden the understanding of ASCs with new insights into the origin of white fat depot differences.


Assuntos
Adipócitos , Tecido Adiposo , Adipócitos/metabolismo , Adipogenia , Tecido Adiposo/metabolismo , Animais , Mamíferos , Células-Tronco/metabolismo , Gordura Subcutânea/metabolismo
12.
Diabetes ; 70(1): 182-195, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33046512

RESUMO

Becn1/Beclin-1 is a core component of the class III phosphatidylinositol 3-kinase required for autophagosome formation and vesicular trafficking. Although Becn1 has been implicated in numerous diseases such as cancer, aging, and neurodegenerative disease, the role of Becn1 in white adipose tissue and related metabolic diseases remains elusive. In this study, we show that adipocyte-specific Becn1 knockout mice develop severe lipodystrophy, leading to adipose tissue inflammation, hepatic steatosis, and insulin resistance. Ablation of Becn1 in adipocytes stimulates programmed cell death in a cell-autonomous manner, accompanied by elevated endoplasmic reticulum (ER) stress gene expression. Furthermore, we observed that Becn1 depletion sensitized mature adipocytes to ER stress, leading to accelerated cell death. Taken together, these data suggest that adipocyte Becn1 would serve as a crucial player for adipocyte survival and adipose tissue homeostasis.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Proteína Beclina-1/metabolismo , Resistência à Insulina/genética , Lipodistrofia/metabolismo , Doenças Metabólicas/metabolismo , Animais , Proteína Beclina-1/genética , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Homeostase/genética , Inflamação/genética , Inflamação/metabolismo , Lipodistrofia/genética , Doenças Metabólicas/genética , Camundongos , Camundongos Knockout
13.
Molecules ; 26(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383880

RESUMO

Dryopteris crassirhizoma rhizomes are used as a traditional medicine in Asia. The EtOAc extract of these roots has shown potent xanthine oxidase (XO) inhibitory activity. However, the main phloroglucinols in D. crassirhizoma rhizomes have not been analyzed. Thus, we investigated the major constituents responsible for this effect. Bioassay-guided purification isolated four compounds: flavaspidic acid AP (1), flavaspidic acid AB (2), flavaspidic acid PB (3), and flavaspidic acid BB (4). Among these, 1 showed the most potent inhibitory activity with a half-maximal inhibitory concentration (IC50) value of 6.3 µM, similar to that of allopurinol (IC50 = 5.7 µM) and better than that of oxypurinol (IC50 = 43.1 µM), which are XO inhibitors. A comparative activity screen indicated that the acetyl group at C3 and C3' is crucial for XO inhibition. For example, 1 showed nearly 4-fold higher efficacy than 4 (IC50 = 20.9 µM). Representative inhibitors (1-4) in the rhizomes of D. crassirhizoma showed reversible and noncompetitive inhibition toward XO. Furthermore, the potent inhibitors were shown to be present in high quantities in the rhizomes by a UPLC-QTOF-MS analysis. Therefore, the rhizomes of D. crassirhizoma could be used to develop nutraceuticals and medicines for the treatment of gout.


Assuntos
Dryopteris/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Floroglucinol/análogos & derivados , Floroglucinol/farmacologia , Xantina Oxidase/antagonistas & inibidores , Butirofenonas/química , Butirofenonas/farmacologia , Humanos , Hiperuricemia/tratamento farmacológico , Hiperuricemia/enzimologia , Rizoma/química , Xantina Oxidase/metabolismo
14.
Proc Natl Acad Sci U S A ; 116(24): 11936-11945, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31160440

RESUMO

Accumulating evidence suggests that subcutaneous and visceral adipose tissues are differentially associated with metabolic disorders. In obesity, subcutaneous adipose tissue is beneficial for metabolic homeostasis because of repressed inflammation. However, the underlying mechanism remains unclear. Here, we demonstrate that γ-aminobutyric acid (GABA) sensitivity is crucial in determining fat depot-selective adipose tissue macrophage (ATM) infiltration in obesity. In diet-induced obesity, GABA reduced monocyte migration in subcutaneous inguinal adipose tissue (IAT), but not in visceral epididymal adipose tissue (EAT). Pharmacological modulation of the GABAB receptor affected the levels of ATM infiltration and adipose tissue inflammation in IAT, but not in EAT, and GABA administration ameliorated systemic insulin resistance and enhanced insulin-dependent glucose uptake in IAT, accompanied by lower inflammatory responses. Intriguingly, compared with adipose-derived stem cells (ADSCs) from EAT, IAT-ADSCs played key roles in mediating GABA responses that repressed ATM infiltration in high-fat diet-fed mice. These data suggest that selective GABA responses in IAT contribute to fat depot-selective suppression of inflammatory responses and protection from insulin resistance in obesity.


Assuntos
Tecido Adiposo/metabolismo , Inflamação/metabolismo , Obesidade/metabolismo , Células-Tronco/metabolismo , Tela Subcutânea/metabolismo , Ácido gama-Aminobutírico/metabolismo , Adipócitos/metabolismo , Adiposidade/genética , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Humanos , Insulina/metabolismo , Gordura Intra-Abdominal/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
15.
J Antibiot (Tokyo) ; 72(8): 625-628, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31024078

RESUMO

Three new meroterpenoids (1-3) together with one known compound (4) were isolated from the culture broth of Perenniporia medulla-panis, a wood-rotting fungus in the family Polyporaceae. Their structures were elucidated by NMR and HRESIMS analyses. These compounds exhibited antioxidant activity with IC50 values ranging from 12.8 to 190.3 µM in the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging assay.


Assuntos
Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Polyporaceae/química , Terpenos/isolamento & purificação , Terpenos/farmacologia , Benzotiazóis/química , Meios de Cultura , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/farmacologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Ácidos Sulfônicos/química
16.
Mol Cell Biol ; 39(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30397073

RESUMO

Oxygen is a key molecule for efficient energy production in living organisms. Although aerobic organisms have adaptive processes to survive in low-oxygen environments, it is poorly understood how lipolysis, the first step of energy production from stored lipid metabolites, would be modulated during hypoxia. Here, we demonstrate that fasting-induced lipolysis is downregulated by hypoxia through the hypoxia-inducible factor (HIF) signaling pathway. In Caenorhabditis elegans and mammalian adipocytes, hypoxia suppressed protein kinase A (PKA)-stimulated lipolysis, which is evolutionarily well conserved. During hypoxia, the levels of PKA activity and adipose triglyceride lipase (ATGL) protein were downregulated, resulting in attenuated fasting-induced lipolysis. In worms, HIF stabilization was sufficient to moderate the suppressive effect of hypoxia on lipolysis through ATGL and PKA inhibition. These data suggest that HIF activation under hypoxia plays key roles in the suppression of lipolysis, which might preserve energy resources in both C. elegans and mammalian adipocytes.


Assuntos
Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Lipase/metabolismo , Células 3T3 , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Transporte/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação para Baixo , Lipídeos/fisiologia , Lipólise/efeitos dos fármacos , Lipólise/fisiologia , Camundongos , Nematoides , Fosforilação , Transdução de Sinais
17.
Nat Commun ; 8(1): 1087, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29057873

RESUMO

Obesity is closely associated with increased adipose tissue macrophages (ATMs), which contribute to systemic insulin resistance and altered lipid metabolism by creating a pro-inflammatory environment. Very low-density lipoprotein receptor (VLDLR) is involved in lipoprotein uptake and storage. However, whether lipid uptake via VLDLR in macrophages affects obesity-induced inflammatory responses and insulin resistance is not well understood. Here we show that elevated VLDLR expression in ATMs promotes adipose tissue inflammation and glucose intolerance in obese mice. In macrophages, VLDL treatment upregulates intracellular levels of C16:0 ceramides in a VLDLR-dependent manner, which potentiates pro-inflammatory responses and promotes M1-like macrophage polarization. Adoptive transfer of VLDLR knockout bone marrow to wild-type mice relieves adipose tissue inflammation and improves insulin resistance in diet-induced obese mice. These findings suggest that increased VLDL-VLDLR signaling in ATMs aggravates adipose tissue inflammation and insulin resistance in obesity.


Assuntos
Tecido Adiposo/metabolismo , Resistência à Insulina/imunologia , Macrófagos/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Receptores de LDL/metabolismo , Tecido Adiposo/imunologia , Animais , Western Blotting , Citometria de Fluxo , Imuno-Histoquímica , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Science ; 352(6288): 986-90, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27080106

RESUMO

Phosphorus is a macronutrient taken up by cells as inorganic phosphate (P(i)). How cells sense cellular P(i) levels is poorly characterized. Here, we report that SPX domains--which are found in eukaryotic phosphate transporters, signaling proteins, and inorganic polyphosphate polymerases--provide a basic binding surface for inositol polyphosphate signaling molecules (InsPs), the concentrations of which change in response to P(i) availability. Substitutions of critical binding surface residues impair InsP binding in vitro, inorganic polyphosphate synthesis in yeast, and P(i) transport in Arabidopsis In plants, InsPs trigger the association of SPX proteins with transcription factors to regulate P(i) starvation responses. We propose that InsPs communicate cytosolic P(i) levels to SPX domains and enable them to interact with a multitude of proteins to regulate P(i) uptake, transport, and storage in fungi, plants, and animals.


Assuntos
Homeostase , Inositol/metabolismo , Proteínas de Transporte de Fosfato/química , Fósforo/metabolismo , Polifosfatos/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cristalografia por Raios X , Citosol/metabolismo , Humanos , Proteínas de Transporte de Fosfato/genética , Estrutura Secundária de Proteína/genética , Estrutura Terciária de Proteína/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética
19.
Plant Physiol ; 170(1): 385-400, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26546667

RESUMO

The response of shoots to phosphate (Pi) deficiency implicates long-distance communication between roots and shoots, but the participating components are poorly understood. We have studied the topology of the Arabidopsis (Arabidopsis thaliana) PHOSPHATE1 (PHO1) Pi exporter and defined the functions of its different domains in Pi homeostasis and signaling. The results indicate that the amino and carboxyl termini of PHO1 are both oriented toward the cytosol and that the protein spans the membrane twice in the EXS domain, resulting in a total of six transmembrane α-helices. Using transient expression in Nicotiana benthamiana leaf, we demonstrated that the EXS domain of PHO1 is essential for Pi export activity and proper localization to the Golgi and trans-Golgi network, although the EXS domain by itself cannot mediate Pi export. In contrast, removal of the amino-terminal hydrophilic SPX domain does not affect the Pi export capacity of the truncated PHO1 in N. benthamiana. While the Arabidopsis pho1 mutant has low shoot Pi and shows all the hallmarks associated with Pi deficiency, including poor shoot growth and overexpression of numerous Pi deficiency-responsive genes, expression of only the EXS domain of PHO1 in the roots of the pho1 mutant results in a remarkable improvement of shoot growth despite low shoot Pi. Transcriptomic analysis of pho1 expressing the EXS domain indicates an attenuation of the Pi signaling cascade and the up-regulation of genes involved in cell wall synthesis and the synthesis or response to several phytohormones in leaves as well as an altered expression of genes responsive to abscisic acid in roots.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Estrutura Terciária de Proteína , Transdução de Sinais , Nicotiana/genética , Rede trans-Golgi/metabolismo
20.
Plant Biotechnol J ; 14(1): 29-39, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25644367

RESUMO

Geranylgeranyl pyrophosphate synthase (GGPS) is a key enzyme for a structurally diverse class of isoprenoid biosynthetic metabolites including gibberellins, carotenoids, chlorophylls and rubber. We expressed a chloroplast-targeted GGPS isolated from sunflower (Helianthus annuus) under control of the cauliflower mosaic virus 35S promoter in tobacco (Nicotiana tabacum). The resulting transgenic tobacco plants expressing heterologous GGPS showed remarkably enhanced growth (an increase in shoot and root biomass and height), early flowering, increased number of seed pods and greater seed yield compared with that of GUS-transgenic lines (control) or wild-type plants. The gibberellin levels in HaGGPS-transgenic plants were higher than those in control plants, indicating that the observed phenotype may result from increased gibberellin content. However, in HaGGPS-transformant tobacco plants, we did not observe the phenotypic defects such as reduced chlorophyll content and greater petiole and stalk length, which were previously reported for transgenic plants expressing gibberellin biosynthetic genes. Fast plant growth was also observed in HaGGPS-expressing Arabidopsis and dandelion plants. The results of this study suggest that GGPS expression in crop plants may yield desirable agronomic traits, including enhanced growth of shoots and roots, early flowering, greater numbers of seed pods and/or higher seed yield. This research has potential applications for fast production of plant biomass that provides commercially valuable biomaterials or bioenergy.


Assuntos
Cloroplastos/enzimologia , Flores/fisiologia , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Helianthus/enzimologia , Nicotiana/crescimento & desenvolvimento , Nicotiana/genética , Sementes/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Biomassa , Carotenoides/metabolismo , Clorofila/metabolismo , Cruzamentos Genéticos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Glucuronidase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/anatomia & histologia , Plantas Geneticamente Modificadas , Transporte Proteico , Frações Subcelulares/enzimologia , Taraxacum/genética , Taraxacum/crescimento & desenvolvimento , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA