Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 14(22): 10014-10030, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37840453

RESUMO

This study investigated the potential benefits of black chokeberry polyphenol (BCP) supplementation on lipopolysaccharide (LPS)-stimulated inflammatory response in RAW264.7 cells and obesity-induced colonic inflammation in a high fat diet (HFD)-fed rat model. Our findings demonstrated that BCP treatment effectively reduced the production of nitric oxide (NO) and pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6, and MCP-1) in LPS-induced RAW264.7 cells and concurrently mitigated oxidative stress by modulating the levels of malondialdehyde (MDA), catalase (CAT), and glutathione peroxidase (GSH-Px) in a dose-dependent manner. Furthermore, BCP supplementation significantly ameliorated HFD-induced obesity, improved glucose tolerance, and reduced systemic inflammation in HFD-fed rats. Notably, BCP treatment suppressed the mRNA expression of pro-inflammatory cytokines and alleviated intestinal barrier dysfunction by regulating the mRNA and protein expression of key tight junction proteins (ZO-1, occludin, and claudin-1), thereby inhibiting colonic inflammation caused by the TLR4/NF-κB signaling pathway. Additionally, BCP treatment altered the composition and function of the gut microbiota, leading to an increase in the total content of short-chain fatty acids (SCFAs), particularly acetic acid, propionic acid, isobutyric acid, and butyric acid. Collectively, our results highlighted the potential of BCP supplementation as a promising prebiotic strategy for treating obesity-induced colonic inflammation.


Assuntos
Microbioma Gastrointestinal , Photinia , Ratos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Dieta Hiperlipídica/efeitos adversos , Photinia/metabolismo , Receptor 4 Toll-Like/genética , Lipopolissacarídeos/farmacologia , Polifenóis/farmacologia , Obesidade/metabolismo , Inflamação/metabolismo , Transdução de Sinais , Citocinas/metabolismo , RNA Mensageiro
2.
Front Nutr ; 9: 913729, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990329

RESUMO

Black chokeberry (Aronia melanocarpa L.) is rich in polyphenols with various physiological and pharmacological activities. However, the relationship between the modulation effect of black chokeberry polyphenols on obesity and the alteration of lipid metabolism is not clearly understood. This study aimed to investigate the beneficial effects of the black chokeberry polyphenols (BCPs) treatment on the structure of gut microbiota, lipid metabolism, and associated mechanisms in high-fat diet (HFD)-induced obese rats. Here, we found that a high-fat diet promoted body weight gain and lipid accumulation in rats, while oral BCPs supplementation reduced body weight, liver, and white adipose tissue weight and alleviated dyslipidemia and hepatic steatosis in HFD-induced obese rats. In addition, BCPs supplementation prevented gut microbiota dysbiosis by increasing the relative abundance of Bacteroides, Prevotella, Romboutsia, and Akkermansia and decreasing the relative abundance of Desulfovibrio and Clostridium. Furthermore, 64 lipids were identified as potential lipid biomarkers through lipidomics analysis after BCPs supplementation, especially PE (16:0/22:6), PE (18:0/22:6), PC (20:3/19:0), LysoPE (24:0), LysoPE (24:1), and LysoPC (20:0). Moreover, our studies provided new evidence that composition of gut microbiota was closely related to the alteration of lipid profiles after BCPs supplementation. Additionally, BCPs treatment could ameliorate the disorder of lipid metabolism by regulating the mRNA and protein expression of genes related to the glycerophospholipid metabolism signaling pathway in HFD-induced obese rats. The mRNA and protein expression of PPARα, CPT1α, EPT1, and LCAT were significantly altered after BCPs treatment. In conclusion, the results of this study indicated that BCPs treatment alleviated HFD-induced obesity by modulating the composition and function of gut microbiota and improving the lipid metabolism disorder via the glycerophospholipid metabolism signaling pathway.

3.
Food Chem ; 318: 126333, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32151919

RESUMO

Dipeptidyl peptidase-IV (DPP-IV) is an enzyme that break down the antidiabetic hormone glucagon-like peptide-1. Therefore, inhibition of DPP-IV could be an effective strategy to treat Type 2 diabetes (T2D). The α-lactalbumin-rich whey protein concentrate was hydrolyzed by trypsin, and the hydrolysates were then fractionated at a semi-preparative scale using a Superdex Gel filtration Chromatography. The peptides were analyzed by using HPLC coupled with tandem mass spectrometry (RP-HPLC-MS/MS), and their Dipeptidyl peptidase-IV inhibitory activity was determined by the enzymatic assay. Among tested fragments, a potent fragment (LDQWLCEKL), with the half-maximal inhibitory concentration (IC50) of 131 µM was obtained. Further analysis shows that the LDQWLCEKL peptide corresponds to the amino acid sequence of f(115-123) in α-lactalbumin. Furthermore, LDQWLCEKL exhibited a typical non-competitive mode of inhibition. The results indicate that α-lactalbumin contains active peptides with DPP-IV inhibitory activity that may be used to prevent and treat T2D.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/química , Lactalbumina/metabolismo , Peptídeos/química , Proteínas do Soro do Leite/metabolismo , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV/metabolismo , Hidrólise , Concentração Inibidora 50 , Cinética , Lactalbumina/química , Peptídeos/análise , Peptídeos/metabolismo , Espectrometria de Massas em Tandem , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA