Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 43(5): 1062-1074, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477699

RESUMO

Natural and synthetic environmental estrogens (EEs) are widespread and have received extensive attention. Our previous studies demonstrated that depletion of the cytochrome P450 17a1 gene (cyp17a1) leads to all-testis differentiation phenotype in zebrafish and common carp. In the present study, cyp17a1-deficient zebrafish with defective estrogen biosynthesis were used for the evaluation of EEs, as assessed by monitoring vitellogenin (vtg) expression. A rapid and sensitive assessment procedure was established with the 3-day administration of estradiol (E2), followed by examination of the transcriptional expression of vtgs in our cyp17a1-deficient fish. Compared with the control fish, a higher E2-mediated vtg upregulation observed in cyp17a1-deficient zebrafish exposed to 0.1 µg/L E2 is known to be estrogen receptor-dependent and likely due to impaired in vivo estrogen biosynthesis. The more responsive vtg expression in cyp17a1-deficient zebrafish was observed when exposed to 200 and 2000 µg/L bisphenol A (BPA) and perfluoro-1-octanesulfonate (PFOS). The estrogenic potentials of E2, BPA, and PFOS were compared and assessed by the feminization effect on ovarian differentiation in cyp17a1-deficient zebrafish from 18 to 50 days postfertilization, based on which a higher sensitivity of E2 in ovarian differentiation than BPA and PFOS was concluded. Collectively, through the higher sensitivity to EEs and the capacity to distinguish chemicals with different estrogenic potentials exhibited by the all-male cyp17a1-deficient zebrafish with impaired estrogen biosynthesis, we demonstrated that they can be used as an excellent in vivo model for the evaluation of EEs. Environ Toxicol Chem 2024;43:1062-1074. © 2024 SETAC.


Assuntos
Estrogênios , Esteroide 17-alfa-Hidroxilase , Vitelogeninas , Peixe-Zebra , Animais , Masculino , Esteroide 17-alfa-Hidroxilase/genética , Vitelogeninas/genética , Estrogênios/toxicidade , Poluentes Químicos da Água/toxicidade , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Compostos Benzidrílicos/toxicidade , Estradiol , Fenóis/toxicidade , Feminino , Fluorocarbonos/toxicidade , Testículo/efeitos dos fármacos , Testículo/metabolismo
2.
Front Physiol ; 14: 1248999, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719458

RESUMO

Since 2011, ecological operation trials of the Three Gorges Reservoir (TGR) have been continuously conducted to improve the spawning quantity of the four major Chinese carp species below the Gezhouba Dam. In particular, exploring the effects of short-term water velocity stimulation on ovarian development in grass carp (Ctenopharyngodon idellus) is essential to understand the response of natural reproduction to ecological flows. We performed ovary histology analysis and biochemical assays among individuals with or without stimulation by running water. Although there were no obvious effects on the ovarian development characteristics of grass carp under short-term water velocity stimulation, estradiol, progesterone, follicle-stimulating hormone (FSH), and triiodothyronine (T3) concentrations were elevated. Then, we further explored the ovarian development of grass carp under short-term water velocity stimulation by RNA sequencing of ovarian tissues. In total, 221 and 741 genes were up- or downregulated under short-term water velocity stimulation, respectively, compared to the control group. The majority of differentially expressed genes (DEGs) were enriched in pathways including ABC transporters, cytokine-cytokine receptor interaction, ECM-receptor interaction, and steroid hormone biosynthesis. Important genes including gpr4, vtg1, C-type lectin, hsd17b1, cyp19a1a, cyp17a1, and rdh12 that are involved in ovarian development were regulated. Our results provide new insights and reveal potential regulatory genes and pathways involved in the ovarian development of grass carp under short-term water velocity stimulation, which may be beneficial when devising further ecological regulation strategies.

3.
Front Surg ; 10: 1134129, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206350

RESUMO

Objective: The purpose of this study was to investigate the effects of the location of transverse carpal ligament (TCL) transection on the biomechanical property of the carpal arch structure. It was hypothesized that carpal tunnel release would lead to an increase of the carpal arch compliance (CAC) in a location-dependent manner. Methods: A pseudo-3D finite element model of the volar carpal arch at the distal carpal tunnel was used to simulate arch area change under different intratunnel pressures (0-72 mmHg) after TCL transection at different locations along the transverse direction of the TCL. Results: The CAC of the intact carpal arch was 0.092 mm2/mmHg, and the simulated transections ranging from 8 mm ulnarly to 8 mm radially from the center point of the TCL led to increased CACs that were 2.6-3.7 times of that of the intact carpal arch. The CACs after radial transections were greater than those ulnarly transected carpal arches. Conclusion: The TCL transection in the radial region was biomechanically favorable in reducing carpal tunnel constraint for median nerve decompression.

4.
Molecules ; 27(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35807355

RESUMO

(1) Background: Non-small cell lung cancer (NSCLC) is the most common lung cancer. Enhancer RNA (eRNA) has potential utility in the diagnosis, prognosis and treatment of cancer, but the role of eRNAs in NSCLC metastasis is not clear; (2) Methods: Differentially expressed transcription factors (DETFs), enhancer RNAs (DEEs), and target genes (DETGs) between primary NSCLC and metastatic NSCLC were identified. Prognostic DEEs (PDEEs) were screened by Cox regression analyses and a predicting model for metastatic NSCLC was constructed. We identified DEE interactions with DETFs, DETGs, reverse phase protein arrays (RPPA) protein chips, immunocytes, and pathways to construct a regulation network using Pearson correlation. Finally, the mechanisms and clinical significance were explained using multi-dimensional validation unambiguously; (3) Results: A total of 255 DEEs were identified, and 24 PDEEs were selected into the multivariate Cox regression model (AUC = 0.699). Additionally, the NSCLC metastasis-specific regulation network was constructed, and six key PDEEs were defined (ANXA8L1, CASTOR2, CYP4B1, GTF2H2C, PSMF1 and TNS4); (4) Conclusions: This study focused on the exploration of the prognostic value of eRNAs in the metastasis of NSCLC. Finally, six eRNAs were identified as potential markers for the prediction of metastasis of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Prognóstico , RNA
5.
Bioengineered ; 12(1): 5289-5304, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34402716

RESUMO

Bladder cancer (BLCA), originating from the epithelium of the urinary bladder, was the second most common malignancy in the urinary system with a high metastasis rate and poor post-metastasis prognosis. Alternative splicing events (ASEs) were regarded as important markers of tumor progression and prognosis, however, their roles in bladder cancer bone metastasis have not been recognized. In this study, we constructed a predictive model based on ASEs and explored the molecular mechanism of ASEs in BLCA bone metastasis, based on data from the Cancer Genome Atlas (TCGA) and TCGASpliceSeq databases. We proposed the hypothesis that the splicing events of ITGB4 was regulated by the splicing factor JUP, and this regulation might play a key role in BLCA bone metastasis through the glycosphingolipid biosynthesis ganglio series pathway.


Assuntos
Processamento Alternativo/genética , Neoplasias Ósseas , Neoplasias da Bexiga Urinária , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Feminino , Humanos , Masculino , Prognóstico , Transdução de Sinais/genética , Transcriptoma/genética , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/patologia
6.
Life (Basel) ; 10(10)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007994

RESUMO

Colors are important phenotypic traits for fitness under natural conditions in vertebrates. Previous studies have reported several functional genes and genetic variations of pigmentation, but the formation mechanisms of various skin coloration remained ambiguous in fish. Jinbian carp, a common carp variant, displays two colors (yellow and black) in the skin, thus, it is a good model for investigating the genetic basis of pigmentation. In the present study, using the Jinbian carp as model, isobaric tags for relative and absolute quantification (ITRAQ) proteomics analysis was performed for yellow and black skin, respectively. The results showed that 467 differentially expressed proteins (DEPs) were identified between the yellow skin and the black skin. Similar to mammals, the up-regulated DEPs in black skin included UV excision repair protein RAD23 homolog A (Rad23a), melanoregulin (mreg), 5,6-dihydroxyindole-2-carboxylic acid oxidase5 (tyrp1) and melanocyte protein PMEL (PMEL), which were mainly grouped into melanogenesis pathway. However, several up-regulated DEPs in yellow skin were mainly enriched in nucleotide metabolism, such as GTPase IMAP family member 5 (GIMAP5), AMP deaminase 1 (AMPD1), adenosylhomocysteinase b (ahcy-b), and pyruvate kinase (PKM). In summary, several candidate proteins and their enrichment pathways for color variation in Jinbian carp were identified, which may be responsible for the formation of different colorations.

7.
Biology (Basel) ; 9(9)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911654

RESUMO

In mammals, epidermal growth factor (EGF) plays a vital role in both pituitary physiology and pathology. However, the functional role of EGF in the regulation of pituitary hormones has rarely reported in teleost. In our study, using primary cultured grass carp pituitary cells as an in vitro model, we examined the effects of EGF on pituitary hormone secretion and gene expression as well as the post-receptor signaling mechanisms involved. Firstly, we found that EGF significantly reduced luteinizing hormone (LHß) mRNA expression via ErbB1 coupled to ERK1/2 pathway, but had no effect on LH release in grass carp pituitary cells. Secondly, the results showed that EGF was effective in up-regulating mRNA expression of growth hormone (GH), somatolactin α (SLα) and somatolactin ß (SLß) via ErbB1 and ErbB2 and subsequently coupled to MEK1/2/ERK1/2 and PI3K/Akt/mTOR pathways, respectively. However, EGF was not effective in GH release in pituitary cells. Thirdly, we found that EGF strongly induced pituitary prolactin (PRL) release and mRNA expression, which was mediated by ErbB1 and subsequent stimulation of MEK1/2/ERK1/2 and PI3K/Akt/mTOR pathways. Interestingly, subsequent study further found that neurokinin B (NKB) significantly suppressed EGF-induced PRL mRNA expression, which was mediated by neurokinin receptor (NK2R) and coupled to AC/cAMP/PKA signal pathway. These results suggested that EGF could differently regulate the pituitary hormones expression in grass carp pituitary cells.

8.
Int J Mol Sci ; 20(20)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635309

RESUMO

Epidermal growth factor (EGF) is a member of the EGF-like ligands family, which plays a vital role in cell proliferation, differentiation, and folliculogenesis through binding with EGF receptors, including ErbB1 (EGFR/HER1), ErbB2 (HER2), ErbB3 (HER3), and ErbB4 (HER4). In mammals, many functional roles of EGF have been reported in the ovaries and breasts. However, little is known about the functions of EGF in the pituitary, especially in teleost. In this study, using grass carp pituitary cells as the model, we try to examine the direct pituitary actions of EGF in teleost. Firstly, transcriptomic analysis showed that 599 different expressed genes (DEGs) between the control and EGF-treatment group were mainly involved in cell proliferation, cell migration, signal transduction, and transcriptional regulation. Then, we further confirmed that EGF could significantly induce UTS1, EGR1, and MMP13 mRNA expression in a time-and dose-dependent manner. The stimulatory actions of EGF on UTS1 and EGR1 mRNA expression were mediated by the MEK1/2/ERK1/2 and PI3K/AKT/mTOR pathways coupled with both ErbB1 and ErbB2 in grass carp pituitary cells. The receptor specificity and signal transductions for the corresponding responses on MMP13 mRNA expression were also similar, except that the ErbB2 and PI3K/AKT/mTOR pathway were not involved. As we know, MMP13 could release EGF from HB-EGF. Interestingly, our data also showed that the MMPs inhibitor BB94 could suppress EGF-induced UTS1 and EGR1 mRNA expression. These results, taken together, suggest that the stimulatory actions of EGF on UTS1 and EGR1 mRNA expression could be enhanced by EGF-induced MMP13 expression in the pituitary.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Hipófise/metabolismo , Transdução de Sinais , Animais , Carpas , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fator de Crescimento Epidérmico/genética , Metaloproteinase 13 da Matriz , Modelos Biológicos , Ligação Proteica
9.
Int J Mol Sci ; 20(1)2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30587833

RESUMO

Epidermal growth factor (EGF) is a potent regulator of cell function in many cell types. In mammals, the EGF/EGFR system played an important role in both pituitary physiology and pathology. However, it is not clear about the pituitary action of EGF in lower vertebrates. In this study, using grass carp as a model, we found that EGF could stimulate NK3R mRNA and protein expression through pituitary ErbB1 and ErbB2 coupled to MEK/ERK and PI3K/Akt/mTOR pathways. In addition, EGF could also induce pituitary somatolactin α (SLα) secretion and mRNA expression in a dose- and time-dependent manner in vivo and in vitro. The stimulatory actions of EGF on SLα mRNA expression were also mediated by PI3K/Akt/mTOR and MEK/ERK pathways coupled to ErbB1 and ErbB2 activation. Our previous study has reported that neurokinin B (NKB) could also induce SLα secretion and mRNA expression in carp pituitary cells. In the present study, interestingly, we found that EGF could significantly enhance NKB-induced SLα mRNA expression. Further studies found that NK3R antagonist SB222200 could block EGF-induced SLα mRNA expression, indicating an NK3R requirement. Furthermore, cAMP/PKA inhibitors and PLC/PKC inhibitors could both abolish EGF- and EGF+NKB-induced SLα mRNA expression, which further supported that EGF-induced SLα mRNA expression is NK3R dependent.


Assuntos
Carpas/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Proteínas de Peixes/metabolismo , Hipófise/efeitos dos fármacos , Hormônios Hipofisários/metabolismo , Receptores da Neurocinina-3/metabolismo , Animais , AMP Cíclico/metabolismo , Sinergismo Farmacológico , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Peixes/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Hipófise/metabolismo , Hormônios Hipofisários/genética , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , RNA Mensageiro/metabolismo , Receptores da Neurocinina-3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-29937753

RESUMO

17ß-estradiol (E2) is an important sex steroid produced by ovary and brain. In mammals, E2 plays an important role in hypothalamus-pituitary-gonad axis to regulate puberty onset, however, little is known about the functional role of E2 in teleost pituitary. Using prepubertal grass carp as model, three nuclear estrogen receptors (nERs: estrogen receptor alpha, estrogen receptor beta 1, and estrogen receptor beta 2) and two G protein-coupled estrogen receptors (GPER1: GPER1a and GPER1b) were isolated from grass carp pituitary. Tissue distribution analysis indicated that both nERs and GPERs were highly detected in grass carp pituitary, which suggested that E2 should play an important role in grass carp pituitary. Using primary cultured grass carp pituitary cells as model, high-throughput RNA-seq was used to examine the E2-induced differentially expressed genes (DEGs). Transcriptomic analysis showed that E2 could significantly upregulate the expression of 28 genes in grass carp pituitary cells, which were characterized into different functions including reproduction, gonad development, and central nervous system development. Further studies confirmed that E2 could induce luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion and mRNA expression in prepubertal grass carp pituitary in vivo and in vitro. In the pituitary, LH and FSH regulation by E2 were mediated by both ERß and GPER1. Apparently, E2-induced LHß and FSHß mRNA expression were mediated by adenylyl cyclase/cAMP/protein kinase A, phospholipase C/inositol 1,4,5-triphosphate/protein kinase C, and Ca2+/calmodulin/CaM-dependent protein kinase II pathways. In addition to LH and FSH, E2 could also induce growth regulation by estrogen in breast cancer 1 (a novel regulator for pituitary development) mRNA expression in grass carp pituitary cells. These results, as a whole, suggested that E2 could play an important role in gonadotropin hormone release and pituitary development in prepubertal grass carp.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA