Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Sci ; 114(12): 4535-4547, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37750019

RESUMO

Papillary thyroid cancer (PTC) is the most common form of thyroid cancer and is characterized by its tendency for lymphatic metastasis, leading to a poor prognosis. Tetraspanin 1 (TSPAN1) is a member of the tetra-transmembrane protein superfamily and has been implicated in tumorigenesis and cancer metastasis in various studies. However, the role of TSPAN1 in PTC tumor development remains unclear. In this study, we aimed to investigate the impact of TSPAN1 on PTC cell behavior. Our results demonstrate that knockdown of TSPAN1 inhibits PTC cell proliferation, migration, and invasion, while overexpression of TSPAN1 has the opposite effect. These findings suggest that TSPAN1 might play a role in the tumorigenesis and invasiveness of PTC. Mechanistically, we found that TSPAN1 activates the ERK pathway by increasing its phosphorylation, subsequently leading to upregulated expression of c-Myc. Additionally, we observed that TSPAN1-ERK-c-Myc axis activation promotes glycolytic activity in PTC cells, as evidenced by the upregulation of glycolytic genes such as LDHA. Taken together, our findings indicate that TSPAN1 acts as an oncogene in PTC by regulating glycolytic metabolism. This discovery highlights the potential of TSPAN1 as a promising therapeutic target for PTC treatment. Further research in this area could provide valuable insights into the development of targeted therapies for PTC patients.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , Linhagem Celular Tumoral , Neoplasias da Glândula Tireoide/patologia , Câncer Papilífero da Tireoide/patologia , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Proliferação de Células/genética , Tetraspaninas/genética , Tetraspaninas/metabolismo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética
2.
BMC Cancer ; 21(1): 753, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187411

RESUMO

BACKGROUND: Terminal differentiation-induced ncRNA (TINCR) plays an essential role in epidermal differentiation and is involved in the development of various cancers. METHODS: qPCR was used to detect the expression level of TINCR in tissues and cell lines of laryngeal squamous cell carcinoma (LSCC). The potential targets of TINCR were predicted by the bioinformation website. The expression of miR-210 and BTG2 genes were detected by qPCR, and the protein levels of BTG2 and Ki-67 were evaluated by western blot. CCK-8 assay, scratch test, and transwell chamber were used to evaluate the proliferation, invasion, and metastasis ability of LSCC cells. The relationships among TINCR, miR-210, and BTG2 were investigated by bioinformatics software and luciferase reporter assay. The in vivo function of TINCR was accessed on survival rate and tumor growth in nude mice. RESULTS: We used qRT-PCR to detect the expression of TINCR in laryngeal squamous cell carcinoma (LSCC) tissues and cells and found significantly lower levels in cancer tissues compared with adjacent tissues. Additionally, patients with high TINCR expression had a better prognosis. TINCR overexpression was observed to inhibit the proliferation and invasion of LSCC cells. TINCR was shown to exert its antiproliferation and invasion effects by adsorbing miR-210, which significantly promoted the proliferation and invasion of laryngeal squamous cells. Overexpression of miR-210 was determined to reverse the tumour-suppressive effects of TINCR. BTG2 (anti-proliferation factor 2) was identified as the target gene of miR-210, and BTG2 overexpression inhibited the proliferation and invasion of LSCC cells. BTG2 knockdown relieved the inhibitory effects of TINCR on the proliferation and invasion of LSCC. Finally, TINCR upregulation slowed xenograft tumour growth in nude mice and significantly increased survival compared with control mice. CONCLUSION: The results of this study suggest that TINCR inhibits the proliferation and invasion of LSCC by regulating the miR-210/BTG2 pathway, participates in cell cycle regulation, and may become a target for the treatment of LSCC.


Assuntos
MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Carcinoma de Células Escamosas , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Laríngeas/patologia , Camundongos , Camundongos Nus , Transfecção
3.
Endocrine ; 65(2): 318-326, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31030335

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) are an emerging class of regulators in cancer. A lncRNA, MCM3AP-AS1, has been demonstrated as a versatile mediator in many cancers, except papillary thyroid cancer. The aim of this study is to investigate the role and mechanism of MCM3AP-AS1 in papillary thyroid cancer. METHODS: Quantitative real-time PCR was used to assess the level of MCM3AP-AS1 and miR-211-5p in papillary thyroid cancer tissues and cells. Western blot was used to detect E-cadherin and secreted protein acidic and cysteine rich (SPARC) protein levels. CCK-8, scratch wound assay, and transwell assay were used to evaluate papillary thyroid cancer cell proliferation, migration, and invasion, respectively. BLAST alignment and luciferase assay were used to explore the interaction among MCM3AP-AS1, mi/r-211, and SPARC. RESULTS: In papillary thyroid cancer, MCM3AP-AS1 was upregulated, while miR-211 was downregulated. MCM3AP-AS1 overexpression promoted papillary thyroid cancer proliferation, migration, and invasion. Further, MCM3AP-AS1 was shown to be negatively correlated with miR-211-5p. We next validated that miR-211-5p overexpression could reverse the promoting role of MCM3AP-AS1 in papillary thyroid cancer, whereby SPARC plays an important regulating role. In vivo, we confirmed the anti-tumor role of MCM3AP-AS1 silencing and the close relation among MCM3AP-AS1, miR-211-5p, and SPARC. CONCLUSIONS: MCM3AP-AS1 promotes papillary thyroid cancer by regulating the MCM3AP-AS1/miR-211-5p/SPARC axis, which could potentially be a therapeutic target in papillary thyroid cancer.


Assuntos
Acetiltransferases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , MicroRNAs/metabolismo , Osteonectina/metabolismo , Câncer Papilífero da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , RNA Longo não Codificante/metabolismo , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética
4.
Cell Death Dis ; 10(3): 195, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814512

RESUMO

The incidence of papillary thyroid cancer (PTC) has been rapidly increasing in recent years. PTC is prone to lymph node metastasization, which further increases the recurrence rate and mortality of thyroid cancer. However, the underlying mechanisms of this process remain elusive. Several reports have shown that the microRNA miR-215 plays an important role in cancer metastasis. Here, we investigated, for the first time, the potential association between miR-215 and metastasis in PTC. The results of qPCR analysis demonstrated that miR-215 was downregulated in PTC cell lines and tissues, and lower levels of miR-215 correlated with lymph node metastasis of PTC. In vitro and in vivo assays revealed that restoration of miR-215 dramatically inhibited PTC cell proliferation and metastasis. We identified ADP ribosylation factor guanine nucleotide-exchange factor 1 (ARFGEF1) as the target, which mediated the function of miR-215. The expression of ARFGEF1 was inhibited by miR-215, and the effects of miR-215 were abrogated by re-expression of ARFGEF1. Moreover, we found that miR-215 suppressed PTC metastasis by modulating the epithelial-mesenchymal transition via the AKT/GSK-3ß/Snail signaling. In summary, our study proves that miR-215 inhibits PTC proliferation and metastasis by targeting ARFGEF1 and indicates miR-215 as a biomarker for PTC prognosis.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , MicroRNAs/metabolismo , Transdução de Sinais/genética , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/secundário , Neoplasias da Glândula Tireoide/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Regulação para Baixo/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Metástase Linfática/genética , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Recidiva Local de Neoplasia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Transplante Heterólogo
5.
J Agric Food Chem ; 66(43): 11244-11253, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30299946

RESUMO

Avermectin (AVM) as a nonsystemic pesticide possesses a low effective utilization rate. Studies of the multifunctional pesticide delivery system for improving biological activity are developing prosperously. In this study, multifunctional avermectin/polysuccinimide with glycine methyl ester nanoparticles (AVM-PGA) were prepared by the self-assembly process. The AVM loading capacity was up to 23.7%. After 24 h of UV irradiation, there was still about 70% of AVM remaining in PGA42 nanocarriers, as opposed to less than 5% of the free-form AVM. The rising ambient pH promoted the release of AVM using an in vitro releasing test, revealing a favorable pH-responsively controlled-release property. The mortality rate of Plutella xylostella with 2.5 µg/mL of AVM content of AVM-PGA42 was 96.3% after 48 h, while that of free AVM was only 51.5%. In addition, the AVM could be detected in stems and all leaves treated with AVM-PGA42 nanoparticles, whereas rare AVM was detected only in treated leaves for the free-form AVM, which achieved the transportation of nanocarriers carrying AVM in rice for the first time. Furthermore, the PGA nanoparticles performed a good growth promoting effect on rice. These results show that the AVM-PGA42 nanopesticides have a great potential application prospect to control the pest and improve the drug utilization efficiency on agriculture.


Assuntos
Ácido Aspártico/análogos & derivados , Ivermectina/análogos & derivados , Nanopartículas , Oryza/química , Peptídeos/química , Praguicidas/química , Animais , Ácido Aspártico/química , Ácido Aspártico/farmacocinética , Ivermectina/química , Ivermectina/farmacocinética , Lepidópteros , Peptídeos/farmacocinética , Praguicidas/farmacocinética , Folhas de Planta/química
6.
Technol Cancer Res Treat ; 17: 1533033818793424, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30249167

RESUMO

Photoacoustic microscopy is dominantly sensitive to the endogenous optical absorption, while a fluorescence optical microscopy can detect the fluorescence emission to obtain the image of a sample. To some extent, the physical processes of the 2 methods are opposite, one is absorption and another is emission, but both can be used to image cells. In this article, a simultaneous dual-mode imaging system of photoacoustic microscopy and fluorescence optical microscopy is set up to image tobacco cells. Furthermore, gold nanoparticles, which have a large absorption coefficient and enough fluorescence emission with wavelength of 512 nm, are used to label certain drugs and added to the tobacco cells. Then based on the simultaneous dual-mode microscopy imaging system, the photoacoustic microscopy and fluorescence optical microscopy images of gold nanoparticle-labeled tobacco cells are obtained. The final purpose of this experimental research is to detect if the labeled drugs can enter the cells by the positions of the gold nanoparticles. This will help the experts to deliver organic pesticide more accurately and effectively. The experimental results show that by gold nanoparticle labeling technology, the imaging quality of photoacoustic microscopy and fluorescence optical microscopy can be improved, which indicates that the drugs probably enter the tobacco cells successfully.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Microscopia de Fluorescência/métodos , Técnicas Fotoacústicas/métodos , Fluorescência , Nicotiana/metabolismo
7.
J Nanosci Nanotechnol ; 16(5): 4936-42, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27483849

RESUMO

Visualizing the biodistribution of pesticides inside living cells is great importance for enhancing targeting of pesticides. Here we reported for the first time that gold nanorods (Au NRs) with size of 39.4 nm x 11.3 nm could be used as a fluorescent tracer to examine the distribution of a typical herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), in tobacco bright yellow 2 (BY-2) cells. The nanostructures of hybrid materials were analyzed by using Raman spectra and X-ray photoelectron spectroscopy (XPS), including spectra assignments and electronic property. These data revealed 2,4-D has successfully conjugated MP-Au NRs according to Raman and XPS. The biodistribution of the conjugates inside BY-2 cells was directly examined at 12 and 24 h by the two-photon microscopy. The intensity of two-photon luminescence (TPL) inside cells demonstrated that the conjugates could be localized and excluded by BY-2 cells. Thus, this labeling approach opens up new avenues to the facile and efficient labeling of pesticides.


Assuntos
Ácido 2,4-Diclorofenoxiacético/farmacocinética , Ouro/química , Nanoconjugados/química , Nanotubos/química , Nicotiana/metabolismo , Células Cultivadas , Cristalização/métodos , Teste de Materiais , Microscopia de Fluorescência/métodos , Imagem Molecular/métodos , Nanoconjugados/ultraestrutura , Nanotubos/ultraestrutura , Tamanho da Partícula , Praguicidas/farmacocinética , Frações Subcelulares/química , Frações Subcelulares/metabolismo , Frações Subcelulares/ultraestrutura , Nicotiana/química
8.
J Nanosci Nanotechnol ; 15(2): 1674-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26353711

RESUMO

Gold nanoparticles (Au NPs) have drawn significant interest because of their antisotropic physical properties in biomedical applications. In this paper, we reported the application of bamboo (Bambusa chung) leaf extracts, previously not exploited, in the synthesis of Au NPs at ambient temperature. The average dimension of quasi-spherical Au NPs was 28.8±4.5 nm by transmission electron microscopy (TEM). The UV-vis spectroscopy gave an optimal reaction time of 180 min in the process of bioreduction. The organic shell of Au NPs was characterized by Fourier transform infrared (FTIR) spectra and thermogravimetric analysis (TGA), suggesting that the main compositions of the organic shell were hydroxyflavones. The X-ray diffraction (XRD) studies indicated the Au NPs were (111) oriented. This eco-friendly method for the synthesis of Au NPs was simple, amenable for large scale commercial production and biological applications to future in vivo imaging and cancer therapy.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Extratos Vegetais/química , Folhas de Planta/química , Sasa/química , Teste de Materiais , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA