Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Lab Invest ; 103(4): 100041, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870291

RESUMO

Alcoholic fatty liver disease (AFLD) is an early stage of alcohol-related liver disease characterized by abnormal lipid metabolism in hepatocytes. To date, to our knowledge, there have been no effective strategies for preventing or treating alcohol-related liver disease besides alcohol abstinence. Berberine (BBR) is the main bioactive ingredient extracted from traditional Chinese medicines, such as Coptis and Scutellaria, which protect liver function and relieve liver steatosis. However, the potential role of BBR in AFLD remains unclear. Therefore, this study investigated the protective effects of BBR against Gao-binge model-induced AFLD in 6- to 8-week-old C57BL/6J male mice in vivo and ethyl alcohol (EtOH)-induced alpha mouse liver 12 (AML-12) cells in vitro. The results showed that BBR (200 mg/kg) attenuated alcoholic liver injury and suppressed lipid accumulation and metabolism disorders in vivo. Consistently, BBR effectively inhibited the expression of sterol regulatory element-binding transcription factor 1C, sterol regulatory element-binding transcription factor 2, fatty acid synthase, and 3-hydroxy-3-methylglutaryl-CoenzymeA reductase in EtOH-stimulated AML-12 cells in vitro and promoted the expression of sirtuin 1 (SIRT1) in EtOH-fed mice and EtOH-treated AML-12 cells. Furthermore, SIRT1 silencing attenuated the hepatic steatosis alleviation potential of BBR treatment. Mechanistically, molecular docking revealed the binding effect of BBR and adenosine monophosphate-activated protein kinase (AMPK). The results of further studies showed that a decrease in AMPK activity was accompanied by a significant inhibition of SIRT1 expression. SIRT1 silencing attenuated the protective effect of BBR, whereas the inhibition of its expression had no apparent effect on AMPK phosphorylation, suggesting that SIRT1 acts downstream of AMPK in AFLD. Collectively, BBR ameliorated abnormal lipid metabolism and alleviated EtOH-induced liver injury via the AMPK/SIRT1 pathway in AFLD mice.


Assuntos
Berberina , Fígado Gorduroso , Leucemia Mieloide Aguda , Masculino , Camundongos , Animais , Sirtuína 1/metabolismo , Metabolismo dos Lipídeos , Berberina/farmacologia , Berberina/uso terapêutico , Berberina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Etanol/toxicidade , Fatores de Transcrição/metabolismo , Esteróis/metabolismo , Esteróis/farmacologia , Leucemia Mieloide Aguda/metabolismo
2.
Biochem Pharmacol ; 210: 115497, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36907496

RESUMO

Hepatic fibrosis (HF) is a reversible wound-healing response characterized by excessive extracellular matrix (ECM) deposition and secondary to persistent chronic injury. Bromodomain protein 4 (BRD4) commonly functions as a "reader" to regulate epigenetic modifications involved in various biological and pathological events, but the mechanism of HF remains unclear. In this study, we established a CCl4-induced HF model and spontaneous recovery model in mice and found aberrant BRD4 expression, which was consistent with the results in human hepatic stellate cells (HSCs)- LX2 cells in vitro. Subsequently, we found that distriction and inhibition of BRD4 restrained TGFß-induced trans-differentiation of LX2 cells into activated, proliferative myofibroblasts and accelerated apoptosis, and BRD4 overexpression blocked MDI-induced LX2 cells inactivation and promoted the proliferation and inhibited apoptosis of inactivated cells. Additionally, adeno-associated virus serotype 8-loaded short hairpin RNA-mediated BRD4 knockdown in mice significantly attenuated CCl4-induced fibrotic responses including HSCs activation and collagen deposition. Mechanistically, BRD4 deficiency inhibited PLK1 expression in activated LX2 cells, and ChIP and Co-IP assays revealed that BRD4 regulation of PLK1 was dependent on P300-mediated acetylation modification for H3K27 on the PLK1 promoter. In conclusion, BRD4 deficiency in the liver alleviates CCl4-induced HF in mice, and BRD4 participates in the activation and reversal of HSCs through positively regulating the P300/H3K27ac/PLK1 axis, providing a potential insight for HF therapy.


Assuntos
Células Estreladas do Fígado , Proteínas Nucleares , Humanos , Camundongos , Animais , Proteínas Nucleares/metabolismo , Células Estreladas do Fígado/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
3.
Mol Ther Methods Clin Dev ; 26: 191-206, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35859692

RESUMO

Liver fibrosis is a wound-healing response that results from various chronic damages. If the causes of damage are not removed or effective treatments are not given in a timely manner, it will progress to cirrhosis, even liver cancer. Currently, there are no specific medical therapies for liver fibrosis. Adeno-associated virus (AAV)-mediated gene therapy, one of the frontiers of modern medicine, has gained more attention in many fields due to its high safety profile, low immunogenicity, long-term efficacy in mediating gene expression, and increasingly known tropism. Notably, increasing evidence suggests a promising therapeutic potential for AAV-mediated gene therapy in different liver fibrosis models, which helps to correct abnormally changed target genes in the process of fibrosis and improve liver fibrosis at the molecular level. Moreover, the addition of cell-specific promoters to the genome of recombinant AAV helps to limit gene expression in specific cells, thereby producing better therapeutic efficacy in liver fibrosis. However, animal models are considered to be powerless predictive of tissue tropism, immunogenicity, and genotoxic risks in humans. Thus, AAV-mediated gene therapy will face many challenges. This review systemically summarizes the recent advances of AAV-mediated gene therapy in liver fibrosis, especially focusing on cellular and molecular mechanisms of transferred genes, and presents prospective challenges.

4.
Toxicology ; 466: 153087, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34974135

RESUMO

Alcoholic liver injury (ALI) is a major risk factor for alcoholic liver disease, characterized by excessive inflammatory response and abnormal liver dysfunction. Previous studies have indicated that O-alkyl and o-benzyl hesperetin derivative-1 L (HD-1 L) has anti-inflammatory and hepato-protective effects in CCl4-induced liver injury. However, its effect on ALI and underlying mechanism has not been elucidated. This study was designed to evaluate the protective effects of HD-1 L on alcoholic liver injury and reveal the underlying mechanisms. ALI model was established in male C57BL/6 J mice (aged 6-8 weeks) by Gao-Binge protocol. The mice were received different doses of HD-1 L (25 mg/kg, 50 mg/kg, 100 mg/kg) by daily intragastric administration, respectively. Liver function and inflammation were measured. Mechanism underlying the anti-inflammatory and hepato-protective effect of HD-1 L were studied in RAW264.7 cells. In alcoholic liver injury mice, HD-1 L effectively improved the liver pathology, and remarkably reduced the levels of alanine transaminase (ALT), aspartate transaminase (AST), triglyceride (TG) and total cholesterol (T-CHO) in serum. Moreover, HD-1 L markedly suppressed inflammation in vivo and inhibited the secretion of inflammatory factors in vitro. Our results showed that HD-1 L decreased the activity of Bromodomain-containing Protein 2 (BRD2) and inhibited expression of BRD2 in vivo and in vitro. Furthermore, HD-1 L further alleviated alcohol-induced inflammation after blocking BRD2 with inhibitor (JQ1) or BRD2 small interfering (si)-RNA in RAW264.7 cells. Besides, HD-1 L failed to effectively exert its anti-inflammatory effects after over expression of BRD2. In addition, HD-1 L significantly inhibited the phosphorylation and activation of NF-κB-P65 mediated by BRD2. In conclusion, HD-1 L alleviated liver injury and inflammation mainly by inhibiting BRD2-NF-κB signaling pathway, and HD-1 L may be a potential anti-inflammatory compound in treatment of alcoholic liver disease.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Hesperidina/farmacologia , Inflamação/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição/metabolismo , Alanina Transaminase/sangue , Animais , Anti-Inflamatórios/farmacologia , Aspartato Aminotransferases/sangue , Colesterol/sangue , Citocinas/metabolismo , Hesperidina/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Triglicerídeos/sangue
5.
Toxicol Lett ; 355: 88-99, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838997

RESUMO

Liver fibrosis is a reversible wound healing reaction characterized by abnormal accumulation of extracellular matrix (ECM) in response to liver injury. Recent studies have shown that it can be epigenetically regulated, especially by microRNAs (miRNAs). It has been acknowledged that activation of hepatic stellate cells (HSCs) is a pivotal step in the initiation and progression of liver fibrosis. Notably, our results showed that miR-195-3p was increased in HSCs isolated from CCl4-treated mice and that the increase was more pronounced as the degree of liver fibrosis increased. Moreover, treatment of LX-2 cells, a human immortalized hepatic stellate cell line, with TGF-ß1 resulted remarkable upregulation of miR-195-3p. Gain-of-function and loss-of-function experiments have suggested that the increased levels of miR-195-3p inhibit the expression of phosphatase and tension homolog deleted on chromosome 10 (PTEN), a negative regulator of the PI3K/Akt/mTOR signaling pathway in liver fibrosis, thereby contributing to HSC activation and proliferation and promoting the expression of profibrotic genes, such as α-SMA and collagen I, in LX-2 cells, which accelerates the accumulation of fibrous extracellular matrix deposition in the liver, while knockdown of miR-195-3p induced the opposite effect. Taken together, these results provide evidence for the harmful role of miR-195-3p in CCl4-treated mouse liver fibrosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Regiões 3' não Traduzidas , Animais , Intoxicação por Tetracloreto de Carbono/patologia , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
6.
Artigo em Inglês | MEDLINE | ID: mdl-31171483

RESUMO

OBJECTIVE: The aim of this study was to compare root surface area (RSA) measurements of single-root teeth in a sheep mandible based on cone beam computed tomography (CBCT) with measurements made with an optical scanner. STUDY DESIGN: Eight anterior teeth of a sheep cadaver mandible were scanned in situ by using CBCT with 3 different exposure parameters, followed by treatment with smoothing software. The teeth were then extracted and scanned individually with an optical scanner. Three-dimensional digital models of the teeth were reconstructed on the basis of CBCT and optical scanner data. RSA data were calculated, and an equivalence test was used to statistically compare the measurements with significance of difference established at α = 0.05. RESULTS: The means of the differences between RSA measurements from CBCT and optical scanning ranged from 0.33% to 3.01%. There were no statistically significant differences between the 2 methods. The smoothing parameters for good fitness of the linear regression were determined to be 0.8 for the smooth factor, 8 for iterations, and 0 for compensate shrinkage. CONCLUSIONS: The proposed CBCT technique to measure RSA is feasible. RSA data obtained from CBCT in situ are as accurate as optical scanner measurements ex vivo.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Raiz Dentária , Animais , Imageamento Tridimensional , Mandíbula/diagnóstico por imagem , Cintilografia , Ovinos , Software , Raiz Dentária/diagnóstico por imagem
7.
J Craniomaxillofac Surg ; 43(4): 515-20, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25841310

RESUMO

OBJECTIVE: We assessed the clinical results of a biodegradable plate system for the internal fixation of mandibular fractures in children, and observed the imaging features of fracture healing and bone changes around the biodegradable plates and screws during follow-up. PATIENTS AND METHODS: We enrolled 39 patients (22 male, 17 female, average age 4 years 10 months) with different mandibular fractures. We used 2.0-mm resorbable plates to repair the fractures. Postoperative follow-up ranged from 6 months to 5 years; average follow-up was 1 year 2 months. The outcome measures identified and assessed included facial symmetry, mouth opening, occlusal relationship, infection, nonunion, malunion, and plate dehiscence. RESULTS: We fixed 42 fractures with 43 resorbable plates; the fracture site of one patient (aged 11 years 3 months) was fixed with two plates. Two patients developed small fistulas at the intraoral incision 2 months after surgery; the fistulas healed after 1 month without special treatment. In the other patients, the incision healed well, there was facial symmetry, mouth opening was >35 mm, and occlusion was good. Follow-up computed tomography examination data were available for 20 cases, and revealed different degrees of radiolucency indicating that osteolysis had occurred. Radiolucency was observed around the resorbable plates 1 month after the surgery. The extent and depth of the radiolucent region were obvious within 1 year of surgery. In the second year, there were obvious repairs, with the bony defect areas becoming shallower. After 2 years, the bony defect areas had almost disappeared. CONCLUSION: Biodegradable fixation devices are safe and efficient for treating pediatric mandibular fractures. Osteolysis commonly follows biodegradable fixation of pediatric mandibular fractures, and has no adverse effect on fracture healing.


Assuntos
Implantes Absorvíveis , Placas Ósseas , Fixação Interna de Fraturas/instrumentação , Fraturas Mandibulares/cirurgia , Parafusos Ósseos , Criança , Pré-Escolar , Fístula Cutânea/etiologia , Oclusão Dentária , Assimetria Facial/etiologia , Feminino , Seguimentos , Consolidação da Fratura/fisiologia , Fraturas Mal-Unidas/etiologia , Fraturas não Consolidadas/etiologia , Humanos , Lactente , Masculino , Complicações Pós-Operatórias , Amplitude de Movimento Articular/fisiologia , Deiscência da Ferida Operatória/etiologia , Infecção da Ferida Cirúrgica/etiologia , Tomografia Computadorizada por Raios X/métodos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA