RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The root of Angelica sinensis, has been commonly used in gynecology for centuries, and is normally applied divided into different parts in various clinical applications. At present, the majority of existing studies focus on the volatile oil and ferulic acid extracted from different parts of A. sinensis, but there is a dearth of scientific information on its water-soluble polysaccharides. AIM OF THE STUDY: The structures of polysaccharides from plants, have been reported contributing to multiple pharmacological activities such as anti-oxidative, anti-inflammatory, anti-tumor and liver protection. Therefore, the focus of this study was on its anti-oxidative and anti-inflammatory activities in vitro, which would be based on the various polysaccharides with distinct structures obtained from different parts of the A. sinensis root. MATERIALS AND METHODS: Four parts of A. sinensis root were separated according to the Chinese Pharmacopoeia: head, body, tail and whole body. Crude polysaccharides were obtained by water extraction and ethanol precipitation method, and were further fractionated by DEAE Sepharose chromatographic column and gel filtration. The comparison of ASPs from different root parts were performed, including chemical compositions determined by colorimetric analysis, monosaccharide compositions measured by high performance liquid chromatography (HPLC), glycosidic linkage units determined by methylation and gas chromatography-mass spectrometry (GC-MS), organic functional groups determined by FT-IR, molecular weight (Mw) demarcated by gel permeation chromatography, and the viscosities and solubilities were measured according to method published in the previous report with minor modification. In vitro biological activities of APSs were compared on lipopolysaccharide (LPS)-induced inflammatory and oxidative stress models on IPEC-J2 cells. RESULTS: Four purified polysaccharides, ASP-H-AP, ASP-B-AP, ASP-T-AP and ASP-Hb-AP from the root of A. sinensis, were obtained, and consisted of various contents of protein and the polyphenol. They were possibly pectic polysaccharides with a long homogalacturonan region as the main backbone and ramified with rhamnogalacturonan I region, but they were differed by subregions and the relative contents of glycosidic units. The Mw of four pectic polysaccharides were ranged from 67.9-267.7 kDa. The infrared spectrum also showed that the four polysaccharide fractions contained the characteristic peaks of polysaccharides. Their distinct primary structure could lead to a variety of biological activities. In vitro biological assays suggested that four polysaccharide fractions can protect IPEC-J2 cells against the LPS-induced inflammation by down-regulating inflammation factors and related genes on IPEC-J2 cells. These polysaccharides also could alleviate oxidative stress on IPEC-J2 cells by up-regulating the gene and protein expressions of antioxidant enzymes. It was concluded that ASP-H-AP possessed better anti-inflammatory and anti-oxidative effects, while those of ASP-T-AP was relatively poor among the four polysaccharide fractions. CONCLUSION: All results indicated that the structure of pectic polysaccharides from different root parts of A. sinensis differed, which lead to their distinct anti-inflammatory and anti-oxidative activities. This may also be one of the factors why different parts of A. sinensis showed various pharmacological activities and applied independently in traditional use. In addition, it would be valuable for further studies on structure-activity relationship of polysaccharides obtained by different root parts of A. sinensis.
Assuntos
Angelica sinensis , Angelica sinensis/química , Anti-Inflamatórios/farmacologia , Inflamação , Lipopolissacarídeos , Polissacarídeos/química , Polissacarídeos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Água/químicaRESUMO
In this study, the Nelumbo nucifera leaf polysaccharide (NNLP) was isolated by hot water extraction and ethanol precipitation. DEAE anion exchange chromatography and gel filtration were further performed to obtained the purified fraction NNLP-I-I, the molecular weight of which was 16.4 kDa. The monosaccharide composition analysis and linkage units determination showed that the fraction NNLP-I-I was a pectic polysaccharide. In addition, the NMR spectra analysis revealed that NNLP-I-I mainly consisted of a homogalacturonan backbone and rhamnogalacturonan I, containing a long HG region and short RG-I region, with AG-II and 1-3 linked rhamnose as side chains. The biological studies demonstrated that NNLP-I-I displayed antioxidant properties through mediating the Nrf2-regulated intestinal cellular antioxidant defense, which could protect cultured intestinal cells from oxidative stress and improve the intestinal function of aged mice.
Assuntos
Antioxidantes/farmacologia , Nelumbo/química , Pectinas/farmacologia , Folhas de Planta/química , Animais , Antioxidantes/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Malondialdeído , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Pectinas/química , Superóxido Dismutase , SuínosRESUMO
BACKGROUND: Codonopsis pilosula and Codonopsis tangshen are plants widely used in traditional Chinese medicine. Two pectic polysaccharides from the roots of C. pilosula and C. tangshen named as CPP-1 and CTP-1 were obtained by boiling water extraction and column chromatography. RESULTS: The core structures of both CPP-1 and CTP-1 comprise the long homogalacturonan region (HG) as the backbone and the rhamnogalacturonan I (RG-I) region as the side chains. CPP-1 has methyl esterified galacturonic acid units and a slightly lower molecular weight than CTP-1. Biological testing suggested that CPP-1 and CTP-1 can protect IPEC-J2 cells against the H2 O2 -induced oxidative stress by up-regulating nuclear factor-erythroid 2-related factor 2 and related genes in IPEC-J2 cells. The different antioxidative activities of polysaccharides from different source of C. pilosula may be result of differences in their structures. CONCLUSION: All of the results indicated that pectic polysaccharides CPP-1 and CTP-1 from different species of C. pilosula roots could be used as a potential natural antioxidant source. These findings will be valuable for further studies and new applications of pectin-containing health products. © 2021 Society of Chemical Industry.
Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Codonopsis/química , Pectinas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Linhagem Celular , Humanos , Fator de Transcrição NF-E2/genética , Fator de Transcrição NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pectinas/farmacologia , Raízes de Plantas/químicaRESUMO
Platycodonis Radix is widely used as homology of medicine and food in China; polysaccharides are thought to be one of its functional constituents. In this study, a pectic polysaccharide, PGP-I-I, was obtained from the root of the traditional medicine plant Platycodon grandiflorus through ion exchange chromatography and gel filtration. This was characterized being mainly composed of 1,5-α-L-arabinan and both arabinogalactan type I (AG-I) and II chains linked to rhamnogalacturonan I (RG-I) backbone linked to longer galacturonan chains. In vitro bioactivity study showed that PGP-I-I could restore the intestinal cellular antioxidant defense under the condition of hydrogen peroxide (H2O2) treatment through promoting the expressions of cellular antioxidant genes and protect against oxidative damages.
Assuntos
Pectinas/química , Platycodon/química , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Linhagem Celular , Cromatografia em Gel , Cromatografia por Troca Iônica , Carboidratos da Dieta , Galactanos/química , Peróxido de Hidrogênio , Extratos Vegetais/química , Raízes de Plantas/química , Polissacarídeos/química , SuínosRESUMO
BACKGROUND: Codonopsis pilosula and C. tangshen are both plants widely used in traditional Chinese medicine. Polysaccharides, which are their primary active components, are thought to be important in their extensive use. In this study, two neutral polysaccharide fractions of C. pilosula (CPPN) and C. tangshen (CTPN) were obtained by fractionation on a DEAE-Sepharose column and characterized. RESULTS: It was confirmed that the neutral polymers CPPN and CTPN were ß-(2,1)-linked inulin-type fructans with non-reducing terminal glucose, and degree of polymerization (DP) of 19.6 and 25.2, respectively. The antioxidant and prebiotic activities in vitro were assayed based on IPEC-J2 cell lines and five strains of Lactobacillus. Results indicated that the effects of CPPN and CTPN were increased antioxidant defense in intestinal epithelial cells through enhanced cell viability, improved expression of total antioxidant capacity, glutathione peroxidase, superoxide dismutase and catalase, and reduced levels of malondialdehyde and lactic dehydrogenase. The prebiotic activity of CPPN and CTPN was demonstrated by the promoting effect on Lactobacillus proliferation in vitro. The different biological activities obtained between the two fractions are probably due to the different DP and thus molecular weights of CPPN and CTPN. CONCLUSION: The inulin fractions from C. pilosula and C. tangshen were natural sources of potential intestinal antioxidants as well as prebiotics, which will be valuable in further studies and new applications of inulin-containing health products. © 2020 Society of Chemical Industry.
Assuntos
Antioxidantes/química , Codonopsis/química , Medicamentos de Ervas Chinesas/química , Frutanos/química , Inulina/química , Prebióticos/análise , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Codonopsis/classificação , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Frutanos/isolamento & purificação , Frutanos/farmacologia , Humanos , Inulina/isolamento & purificação , Inulina/farmacologia , Lactobacillus/efeitos dos fármacos , Lactobacillus/crescimento & desenvolvimento , Estresse Oxidativo/efeitos dos fármacos , PolimerizaçãoRESUMO
Exosomes are small membrane vesicles that retain various substances such as proteins, nucleic acids, and small RNAs. Exosomes play crucial roles in many physiological and pathological processes, including innate immunity. Innate immunity is an important process that protects the organism through activating pattern recognition receptors (PRRs), which then can induce inflammatory factors to resist pathogen invasion. Toll-like receptor (TLR) is one member of PRRs and is important in pathogen clearance and nervous disease development. Although exosomes and TLRs are two independent materials, abundant evidences imply exosomes can regulate innate immunity through integrating with TLRs. Herein, we review the most recent data regarding exosome regulation of TLR pathways. Specifically, exosome-containing materials can regulate TLR pathways through the interaction with TLRs. This is a new strategy regulating immunity to resist pathogens and therapy diseases, which provide a potential method to cure diseases.
Assuntos
Exossomos/metabolismo , Imunidade Inata , Neoplasias/metabolismo , Neovascularização Patológica , Doenças do Sistema Nervoso/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Receptores Toll-Like/metabolismo , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Endocitose , Humanos , Lisossomos/metabolismo , Camundongos , RNA Interferente Pequeno/metabolismo , Transdução de SinaisRESUMO
In this study, an acidic polysaccharide from Codonopsis pilosula Nannf. var. modesta (Nannf.) L. T. Shen (WCP-I) and its main fragment, WCP-Ia, obtained after pectinase digestion, were structurally elucidated and found to consist of a rhamnogalacturonan I (RG-I) region containing both arabinogalactan type I (AG-I) and type II (AG-II) as sidechains. They both expressed immunomodulating activity against Peyer's patch cells. Endo-1,4-ß-galactanase degradation gave a decrease of interleukine 6 (IL-6) production compared with native WCP-I and WCP-Ia, but exo-α-l-arabinofuranosidase digestion showed no changes in activity. This demonstrated that the stimulation activity partly disappeared with removal of ß-d-(1â4)-galactan chains, proving that the AG-I side chain plays an important role in immunoregulation activity. WCP-Ia had a better promotion effect than WCP-I in vivo, shown through an increased spleen index, higher concentrations of IL-6, transforming growth factor-ß (TGF-ß), and tumor necrosis factor-α (TNF-α) in serum, and a slight increment in the secretory immunoglobulin A (sIgA) and CD4+/CD8+ T lymphocyte ratio. These results suggest that ß-d-(1â4)-galactan-containing chains in WCP-I play an essential role in the expression of immunomodulating activity. Combining all the results in this and previous studies, the intestinal immune system might be the target site of WCP-Ia.
Assuntos
Codonopsis/química , Fatores Imunológicos/farmacologia , Imunomodulação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Hidrólise , Imunidade nas Mucosas/efeitos dos fármacos , Fatores Imunológicos/química , Camundongos , Estrutura Molecular , Monossacarídeos/química , Nódulos Linfáticos Agregados/efeitos dos fármacos , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Extratos Vegetais/química , Polissacarídeos/química , Análise EspectralRESUMO
Flaviviridae family is a class of single-stranded RNA virus, which is fatal to human and animals and mainly prevalent in subtropic and tropic countries. Even though people and animals are barraged with flavivirus infection every year, we have not invented either vaccines or antiviral for most flavivirus infections yet. Innate immunity is the first line of defense in resisting pathogen invasion, serving an important role in a resisting virus. Toll-like receptors (TLRs) and retinoic acid-inducible gene I- (RIG-I-) like receptors (RLRs) are crucial pattern recognition receptors (PRRs) that play essential roles in recognizing and clearing pathogens, including resisting flavivirus. In the present review, we provide a significant reference for further research on the function of innate immunity in resisting flavivirus.
Assuntos
Proteína DEAD-box 58/metabolismo , Resistência à Doença/imunologia , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/metabolismo , Flavivirus/imunologia , Interações Hospedeiro-Patógeno/imunologia , Receptores Toll-Like/metabolismo , Animais , Infecções por Flavivirus/virologia , Humanos , Transdução de SinaisRESUMO
Riemerella anatipestifer is an important pathogenic bacterium that infects ducks. It exhibits resistance to multiple classes of antibiotics. Multidrug efflux pumps play a major role as a mechanism of antimicrobial resistance in Gram-negative pathogens and they are poorly understood in R. anatipestifer. In this study, a gene encoding the B739_0873 protein in R. anatipestifer CH-1, which belongs to the resistance-nodulation-cell division (RND) efflux pump family, was identified. With respect to the substrate specificity of B739_0873, the antibiotic susceptibility testing showed that the B739_0873 knockout strain was more sensitive to aminoglycosides and detergents than the wild-type strain. The transcription of B739_0873 was up-regulated when R. anatipestifer CH-1 was exposed to sub-inhibitory levels of these substrates. From the gentamicin accumulation assay, we concluded that B739_0873 was coupled to the proton motive force to pump out gentamicin. Furthermore, site-directed mutagenesis demonstrated that Asp 400, Asp 401, Lys 929, Arg 959, and Thr 966 were the crucial function sites of B739_0873 in terms of its ability to extrude aminoglycosides and detergents. Finally, we provided evidence that B739_0873 is co-transcribed with B739_0872, and that both B739_0872 and B739_0873 are required for aminoglycoside and detergent resistance. In view of these results, we designate B739_0873 as RaeB (Riemerella anatipestifer efflux).
RESUMO
Avian tuberculosis is a contagious disease affecting various domestic and wild bird species, and is caused by Mycobacterium avium . It is reported extremely rarely in commercial poultry flocks and has not been reported in commercial domestic ducks to date, with domestic ducks reported to be moderately resistant to M. avium infection. Here, we report the outbreak of avian tuberculosis in commercial Pekin duck ( Anas platyrhynchos domestica) flocks. Postmortem and histopathologic findings included nodules presenting in the visceral organs of ducks, and granulomas with central caseous necrosis surrounded by infiltrating lymphocytes. The M. avium pathogen was isolated and further identified by Ziehl-Neelsen staining and PCR based on insert sequence IS901 and the 16S rRNA gene. We highlight that avian tuberculosis not only has economic significance for the duck industry, but also presents a potential zoonotic hazard to humans.
Assuntos
Surtos de Doenças/veterinária , Patos , Mycobacterium avium/isolamento & purificação , Doenças das Aves Domésticas/epidemiologia , Tuberculose Aviária/epidemiologia , Animais , China/epidemiologia , Elementos de DNA Transponíveis/genética , Mycobacterium avium/classificação , Mycobacterium avium/genética , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/patologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/veterinária , Tuberculose Aviária/microbiologia , Tuberculose Aviária/patologiaRESUMO
Saponin frsom Cortex Albiziae (SCA) are extensively used in the clinical treatment of tumor and depression. However, SCA may cause several adverse effects, including reproductive toxicity. The present study was designed to assess the mechanism by which SCA cause reproductive toxicity in female mice. The general reproductive toxicity testing was accomplished in female Kunming mice. The animals were divided into four groups: three groups that were treated by oral gavage with 135, 270, and 540 mg·kg(-1)·d(-1) of SCA prepared in physiological saline, respectively, and one vehicle control group that was treated with physiological saline only. The gestational toxicity tests were conducted at 540 mg·kg(-1)·d(-1). The general reproductive toxicity results showed that the pregnancy rate of the SCA-treated group decreased with the pregnancy rate being decreased by 70% at 540 mg·kg(-1)·d(-1). SCA elicited maternal toxicity in the ovary and the uterus, but no fetal toxicity or teratogenicity was observed. The rates of implantation in the early, middle, and late pregnancy were all decreased, with stillbirths and maternal deaths being observed. Histopathological changes showed that SCA adversely affected the ovary and the uterus. In conclusion, SCA-induced reproductive toxicity in female mice is most likely caused by its damage to the ovary and the uterus.
Assuntos
Albizzia/química , Extratos Vegetais/toxicidade , Reprodução/efeitos dos fármacos , Saponinas/toxicidade , Albizzia/toxicidade , Animais , Implantação do Embrião/efeitos dos fármacos , Feminino , Humanos , Camundongos , Ovário/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Gravidez , Saponinas/administração & dosagem , Útero/efeitos dos fármacosRESUMO
Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922 and Salmonella enteritidis CMCC (B) 50041, were used in the antibacterial tests of Cinnamomum longepaniculatum leaf essential oil and its five chemical constituents. The effect of 1, 8-cineole on the ultrastructural structure of the bacteria (S. aureus and E. coli) was also investigated by transmission electron microscopy. The C. longepaniculatum leaf essential oil and the five chemical constituents showed variable levels of inhibition. Their MIC ( minimum inhibitory concentration ) and MBC (minimal bacteriocidal concentration) values were all in the range of 0.781 µL/mL~6.25 µL/mL and 0.781 µL/mL~12.5 µL/mL respectively except γ-terpinene. The MIC values of γ-terpinene against E. coli and S. aureus were all higher than 50 µL/mL, but the MIC and MBC values of γ-terpinene against S. enteritidis was only 3.125 µL/mL. Among them, α-terpineol possessed the best antibacterial activity. Under the transmission electron microscope, cell size of treated E. coli decreased, cell wall and cell membrane ruptured, and nucleoplasm was reduced and gathered onto the side. After the S. aureus was treated with 1, 8-cineole, the cell size and shape were damaged and nucleus cytoplasm was concentrated or reduced or agglomerated on the side. These results suggest that C. longepaniculatum leaf essential oil and its constituents have excellent antibacterial activities, the antibacterial mechanism of 1, 8-cineole against E. coli and S. aureus might attributable to its hydrophobicity.
RESUMO
Octadecanoic acid-3,4-tetrahydrofuran diester, isolated from neem (Azadirachta indica) oil, exhibited potent acaricidal activity against Sarcoptes scabiei var. cuniculi. In this paper, the acaricidal mechanism of octadecanoic acid-3,4-tetrahydrofuran diester against Sarcoptes scabiei var. cuniculi was evaluated based on pathologic histology and enzyme activities. The results showed that after compound treatment for 24h at a concentration of 20mg/mL, the lesions of mites were prominent under transmission electron microscopy. The lesions consisted of the lysis of dermis cell membranes and cell nuclear membranes, mitochondrial morphological abnormalities, the drop of spinal disorders, and mitochondrial vacuolization. The activity of superoxide dismutase (SOD), peroxidase (POD), glutathione-s-transferases (GSTs), and Ca(2+)-ATPase of mites significantly changed after treatment with octadecanoic acid-3,4-tetrahydrofuran diester compared with the control group. The activities of SOD, POD, and Ca(2+)-ATPase were significantly suppressed, whereas that of GSTs was activated. These results indicated that the mechanism of the acaricidal activity of octadecanoic acid-3,4-tetrahydrofuran diester was mainly achieved through interference with the energy metabolism of mites, thus resulting in insect death.
Assuntos
Acaricidas/farmacologia , Azadirachta/química , Sarcoptes scabiei/efeitos dos fármacos , Escabiose/tratamento farmacológico , Ácidos Esteáricos/farmacologia , Acaricidas/isolamento & purificação , Animais , ATPases Transportadoras de Cálcio/metabolismo , Glutationa Transferase/metabolismo , Microscopia Eletrônica de Transmissão , Peroxidase/metabolismo , Sarcoptes scabiei/enzimologia , Sarcoptes scabiei/ultraestrutura , Ácidos Esteáricos/isolamento & purificação , Superóxido Dismutase/metabolismoRESUMO
Glycoprotein N is encoded by glycoprotein N (gN) gene of herpesviruses. The amino acid composition and expression level of this protein vary among difference species of herpesviruses. According to present studies, gN protein is expressed in cytoplasm of host cells, mainly in endoplasmic reticulum. The gN forms a complex with glycoprotein M in host cells. The complex is involved in the processes of viral replication and inter-cellular infection. Moreover, this protein plays a role in immune evasion from host immune system. The study will provide a theoretical basis for further study of herpesvirus gN gene and its encoded protein.
Assuntos
Infecções por Herpesviridae/virologia , Herpesviridae/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Animais , Herpesviridae/genética , HumanosRESUMO
The anti-inflammatory activity of the essential oil from C. longepaniculatum was evaluated by three experimental models including the dimethyl benzene-induced ear edema in mice, the carrageenan-induced paw edema in rat and the acetic acid-induced vascular permeability in mice. The influence of the essential oil on histological changes and prostaglandin E2 (PGE2), histamine and 5-hydroxytryptamine (5-HT) production associated with carrageenan-induced rat paw edema was also investigated. The essential oil (0.5, 0.25, 0.13 ml/kg b.w.) showed significantly inhibition of inflammation along with a dose-dependent manner in the three experimental models. The anti-inflammatory activity of essential oil was occurred both in early and late phase and peaked at 4 h after carrageenan injection. The essential oil resulted in a dose dependent reduction of the paw thickness, connective tissue injury and the infiltration of inflammatory cell. The essential oil also significantly reduced the production of PGE2, histamine and 5-HT in the exudates of edema paw induced by carrageenan. Both the essential oil and indomethacin resulted relative lower percentage inhibition of histamine and 5-HT than that of PGE2 at 4 h after carrageenan injection.
RESUMO
To study the optimum preparation process and stability of beta-cyclodextrin inclusion compound in volatile oil of Cinnamomum longepaniculatum leaves. The saturated aqueous solution method was adopted to prepare inclusion compounds for an orthogonal test. The inclusion compound productivity and the inclusion rate were taken as indexes for screening the inclusion processes. The inclusion effect was evaluated with the infrared spectrophotometry and TLC, and the stability under conditions of high temperature, high humidity and strong light was detected. Under optimum preparation conditions for inclusion, the ratio between volatile oil and beta-cyclodextrin was 1: 8 (mL: g), that between beta-cyclodextrin and water was 1: 15, the inclusion temperature was 40 degrees C, and the inclusion time was 3 h. The results of spectrophotometry and TLC showed that the optimum conditions can generate beta-cyclodextrin inclusion compound in volatile oil of C. longepaniculatum leaves with certain light resistance, thermo-stability and hygro-stability. Therefore the optimum inclusion process features simple operation and stable inclusion compounds.
Assuntos
Cinnamomum/química , Óleos Voláteis/química , beta-Ciclodextrinas/química , Cromatografia em Camada Fina , Estabilidade de Medicamentos , Folhas de Planta/química , Espectrofotometria Infravermelho , Tecnologia FarmacêuticaRESUMO
Neem (Azadirachta indica), popularly known as traditional medicine is a native plant in India. Neem oil is a vegetable oil derived from seeds or fruits of the neem tree through pressing or solvent extraction, and largely used in popular medicine to have antifungal, antibacterial, antimalarial, antiparasitic, anti-inflammatory, as well as immunemodulatory properties in different animal species. In the present study, acute and 28-day subacute toxicity tests were carried out. In the acute toxicity test, the LD50 values of neem oil were found to be 31.95g/kg. The subacute treatment with neem oil failed to change body weight gain, food and water consumption. Serum biochemistry analysis showed no significant differences in any of the parameters examined under the dose of 1600mg/kg/day. Histopathological exams showed that the target organs of neem oil were testicle, liver and kidneys up to the dose of 1600mg/kg/day.
Assuntos
Azadirachta/toxicidade , Glicerídeos/toxicidade , Terpenos/toxicidade , Animais , Azadirachta/química , Peso Corporal/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Glicerídeos/farmacocinética , Índia , Rim/efeitos dos fármacos , Dose Letal Mediana , Fígado/efeitos dos fármacos , Masculino , Camundongos , Plantas Medicinais/química , Sementes/química , Terpenos/farmacocinética , Testículo/efeitos dos fármacos , Distribuição Tecidual , Testes de Toxicidade Aguda , Testes de Toxicidade SubagudaRESUMO
BACKGROUND: Some UL45 gene function of Herpesvirus was reported. While there was no any report of the duck enteritis virus (DEV) UL45 protein as yet. RESULTS: The UL45 gene and des-transmembrane domain of UL45 (named UL45Δ gene, 295-675bp of UL45) of DEV were amplified by PCR and subcloned into the prokaryotic expression vector pET-32a(+). The constructed recombinant plasmids were transformed into the host strain BL21(DE3) PLysS and induced by IPTG. SDS-PAGE analysis showed the UL45 gene couldn't express while UL45Δ gene was highly expressed. His Purify Kit or salting-out could purify the protein effectively. Using the purified protein to immunize New-Zealand rabbits and produce polyclonal antibody. The agar diffusion reaction showed the titer of antibody was 1:32. Western blot analysis indicated the purified rabbit anti-UL45Δ IgG had a high level of specificity and the UL45 gene was a part of DEV genome. The transcription phase study of UL45 gene showed that expression of UL45 mRNA was at a low level from 0 to 18 h post-infection (pi), then accumulated quickly at 24 h pi and peaked at 42 h pi. It can be detected till 72 h pi. Besides, western blot analysis of purified virion and different viral ingredients showed that the UL45 protein resided in the purified virion and the viral envelope. CONCLUSIONS: The rabbit anti-UL45Δ IgG was produced successfully and it can serve as a good tool for penetrating studies of the function of DEV UL45 protein. The transcription phase and protein characteristics analysis indicated that DEV UL45 gene was a late gene and UL45 protein may be a viral envelope protein.
Assuntos
Patos/virologia , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Herpesviridae/genética , Proteínas Estruturais Virais/biossíntese , Animais , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Clonagem Molecular , Expressão Gênica , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Fatores de Tempo , Transcrição Gênica , Proteínas Estruturais Virais/imunologia , Vírion/químicaRESUMO
From a petroleum ether extract of neem oil (Azadirachta indica A. Juss) the new tetrahydrofuranyl diester 1 was isolated as an anti-bacterial constituent. 1 showed significant activities against three standard bacterial strains, including Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922 and Salmonella enteritidis CMCC (B) 50041.
Assuntos
Antibacterianos/isolamento & purificação , Azadirachta/química , Escherichia coli/efeitos dos fármacos , Furanos/isolamento & purificação , Glicerídeos/farmacologia , Óleos de Plantas/farmacologia , Salmonella enteritidis/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Ácidos Esteáricos/isolamento & purificação , Terpenos/farmacologia , Antibacterianos/farmacologia , Furanos/farmacologia , Glicerídeos/química , Óleos de Plantas/química , Sementes , Ácidos Esteáricos/farmacologia , Terpenos/químicaRESUMO
The preparation of neem oil microemulsion and its acaricidal activity in vitro was developed in this study. In these systems, the mixture of Tween-80 and the sodium dodecyl benzene sulfonate (SDBS) (4:1, by weight) was used as compound surfactant; the mixture of compound surfactant and hexyl alcohol (4:1, by weight) was used as emulsifier system; the mixture of neem oil, emulsifier system and water (1:3.5:5.5, by weight) was used as neem oil microemulsion. All the mixtures were stired in 800 rpm for 15 min at 40 degrees C. The acaricidal activity was measured by the speed of kill. The whole lethal time value of 10% neem oil microemulsion was 192.50 min against Sarcoptes scabiei var. cuniculi larvae in vitro. The median lethal time value was 81.7463 min with the toxicity regression equations of Y=-6.0269+3.1514X. These results demonstrated that neem oil microemulsion was effective against Sarcoptes scabie var. cuniculi larvae in vitro.