Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 23(1): 171, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248456

RESUMO

BACKGROUND: Corosolic acid is a pentacyclic triterpene acid with hypoglycemic, anti-inflammatory, and anti-cancer effects. However, its potential targets in hepatocellular carcinoma (HCC) are unknown, hindering clinical utilization. METHODS: Differentially expressed proteins of the Bel-7404 cell line were identified with tandem mass tag analysis and differentially expressed genes (DEGs) of an HCC TCGA dataset using bioinformatics. Gene functions and pathways were inferred using the DAVID database. Online databases were used to establish P4HA2 expression in HCC (GEPIA2) and its relationship with patient survival (UALCAN and The Human Protein Atlas), the association between P4HA2 expression and immune cell infiltration (TIMER2), and DNA methylation of the P4HA2 gene (MethSurv). Cell proliferation, cell cycle, and cell death were assessed with PI and SYTOX-Green staining, CCK-8, and colony formation assays. Protein expression levels were detected by Western blotting. RESULTS: A total of 44 differentially expressed proteins and 4498 DEGs were identified. Four genes whose proteins were also found in the differential protein profile but with opposing expressions were selected as candidate targets. The candidate gene prolyl 4-hydroxylase subunit alpha 2 (P4HA2) was recognized as the only potential target due to its high expression in public datasets, association with poor patient survival, and relation to immune cell infiltration in HCC tissues. Moreover, the DNA methylation status in 4 CpG islands of the P4HA2 gene correlated with a poor prognosis. Furthermore, corosolic acid treatment inhibited the proliferation of HCC cell lines Bel-7404 and HepG2 in a dose-dependent manner, caused G2/M phase cell cycle arrest, and promoted cell death. In addition, the treatment reduced P4HA2 protein levels. CONCLUSION: Our results indicate that P4HA2 is a potential target of corosolic acid. Thus, they contribute to understanding molecular changes in HCC after corosolic acid treatment and facilitate finding new treatment regimens.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Triterpenos , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Linhagem Celular , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Triterpenos/farmacologia , Farmacologia em Rede
2.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 39(6): 642-650, 2021 Dec 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-34859623

RESUMO

OBJECTIVES: To observe the effect of type 2 diabetes mellitus (T2DM) on mandibular bone regeneration and the expression of factors related to T helper cell 17 (Th17 cell) and regulatory T cell (Treg cell) in mice. METHODS: Thirty-six 6-week-old C57BL/6J male mice were randomly divided into normal control (NC) and T2DM groups. Fasting blood glucose levels were detected 0 d, 7 d, 14 d, and 28 d after surgery for mandibular defects. Hematoxylin-eosin (HE) staining was used in observing the bone after 7 d, 14 d, and 28 d of the healing process. Immunohistochemical staining was used in observing the expression of alkaline phosphatase (ALP), Runt-related transcription factor 2 (RUNX2), forkhead box protein P3 (Foxp3), retinoic acid related orphan receptor gamma T (RORγt), and protein tyrosine phosphatase non-receptor type 2 (PTPN2) after 7 d, 14 d, and 28 d of healing. RESULTS: HE staining showed that the area with new bones in the T2DM group was significantly smaller than that in the NC group. Immunohistochemical staining showed that the expression of osteogenesis related proteins ALP and RUNX2 were significantly reduced in the T2DM group. In addition, the number of RORγt positive cells increased, whereas the number of Foxp3 positive cells and the expression PTPN2 decreased significantly in the mandibular bone defect in mice with T2DM. CONCLUSIONS: T2DM significantly inhibit mandibular bone regeneration in mice. Decline in PTPN2 expression and the transition of Treg and Th17 may be the underlying molecular mechanisms.


Assuntos
Diabetes Mellitus Tipo 2 , Animais , Regeneração Óssea , Fatores de Transcrição Forkhead , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição TCF , Células Th17
3.
Int J Pharm ; 580: 119123, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32035258

RESUMO

The development of small molecule anticancer drugs, with low water solubility and high toxicity, into polymeric prodrugs has developed into a promising strategy in clinical application. In this study, we synthesized a novel G3-C12-mediated esterase-sensitive tumor-targeting polymeric prodrug of camptothecin (CPT), P(OEGMA-co-CPT-co-G3-C12), and explored its anticancer activity against androgen-independent prostate cancer in vitro and in vivo. Compared to free CPT, the multifunctional polymeric prodrug demonstrated improved water solubility and stability, higher intracellular uptake, and enhanced cytotoxicity in DU145 cells in vitro. Furthermore, it displayed an improved accumulation in the tumor and an enhanced anticancer activity in vivo. Hence, P(OEGMA-co-CPT-co-G3-C12) could be a promising drug in the treatment of androgen-independent prostate cancer.


Assuntos
Proteínas Sanguíneas/metabolismo , Camptotecina/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Desenvolvimento de Medicamentos/métodos , Galectinas/metabolismo , Pró-Fármacos/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Animais , Camptotecina/administração & dosagem , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Polímeros/administração & dosagem , Polímeros/metabolismo , Pró-Fármacos/administração & dosagem , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
4.
Colloids Surf B Biointerfaces ; 159: 375-385, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28818782

RESUMO

Novel methods to improve the anticancer performance of 5-fluorouracil (5-FU) is quite necessary for clinical medicines. In the present work, we fabricated a novel type of mesoporous silica nanoparticles (MSNs)-based inorganic/organic hybrid nanoparticles covalently attached with poly(oligo(ethylene glycol) monomethyl ether methacrylate) (POEGMA) for improved stabilization and targeting peptide (RGD) for targeted delivery with the aim of improving the anticancer performance of 5-FU. Atom transfer radical polymerization (ATRP) initiator functionalized MSN (MSN-Br) was synthesized at first, which was followed by surface-initiated ATRP of water soluble OEGMA and carboxyl-containing monomer (2-succinyloxyethyl methacrylate, SEMA). Functionalization of RGD onto the hydrophilic P(OEGMA-co-SEMA) chains afforded the final hybrid nanoparticle, MSN-P(OEGMA-co-RGD). 5-FU can be effectively loaded into the meso-pores of MSN-P(OEGMA-co-RGD) (5-FU@MSN-RGD) with drug content ∼7.5wt%. And the dynamic diameter (Dh) and zeta potential (ζ) of 5-FU@MSN-RGD were determined to be 199.3±5.4nm and -8.7±0.5mV, respectively. It was demonstrated that MSN-P(OEGMA-co-RGD) exhibited improved internalization into colon cancer cells and enhanced accumulation in tumor tissues. In addition, compared with free 5-FU, 5-FU@MSN-RGD showed enhanced anticancer efficacy both in vitro and in vivo, implying promising clinical applications.


Assuntos
Fluoruracila/farmacologia , Nanopartículas/química , Dióxido de Silício/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo , Sistemas de Liberação de Medicamentos/métodos , Fluoruracila/química , Humanos , Interações Hidrofóbicas e Hidrofílicas
5.
Cell Res ; 27(4): 540-558, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28084329

RESUMO

Extracellular signals have been shown to impact on alternative pre-mRNA splicing; however, the molecular mechanisms and biological significance of signal-induced splicing regulation remain largely unknown. Here, we report that epidermal growth factor (EGF) induces splicing changes through ubiquitylation of a well-known splicing regulator, hnRNP A1. EGF signaling upregulates an E3 ubiquitin (Ub) ligase adaptor, SPRY domain-containing SOCS box protein 1 (SPSB1), which recruits Elongin B/C-Cullin complexes to conjugate lysine 29-linked polyUb chains onto hnRNP A1. Importantly, SPSB1 and ubiquitylation of hnRNP A1 have a critical role in EGF-driven cell migration. Mechanistically, EGF-induced ubiquitylation of hnRNP A1 together with the activation of SR protein kinases (SRPKs) results in the upregulation of a Rac1 splicing isoform, Rac1b, to promote cell motility. These findings unravel a novel crosstalk between protein ubiquitylation and alternative splicing in EGF/EGF receptor signaling, and identify a new EGF/SPSB1/hnRNP A1/Rac1 axis in modulating cell migration, which may have important implications for cancer treatment.


Assuntos
Processamento Alternativo/genética , Movimento Celular , Fator de Crescimento Epidérmico/farmacologia , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Ubiquitinação , Movimento Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proteínas Culina/metabolismo , Elonguina/metabolismo , Receptores ErbB/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisina/metabolismo , Poliubiquitina/metabolismo , Ligação Proteica/efeitos dos fármacos , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos , Proteínas rac1 de Ligação ao GTP/metabolismo
6.
Nucleic Acids Res ; 43(17): 8516-28, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26240386

RESUMO

Altered miRNA expression is believed to play a crucial role in a variety of human cancers; however, the mechanisms leading to the dysregulation of miRNA expression remain elusive. In this study, we report that the human Y box-binding protein (YB-1), a major mRNA packaging protein, is a novel modulator of miRNA processing in glioblastoma multiforme (GBM). Using individual nucleotide-resolution crosslinking immunoprecipitation coupled to deep sequencing (iCLIP-seq), we performed the first genome-wide analysis of the in vivo YB-1-RNA interactions and found that YB-1 preferentially recognizes a UYAUC consensus motif and binds to the majority of coding gene transcripts including pre-mRNAs and mature mRNAs. Remarkably, our data show that YB-1 also binds extensively to the terminal loop region of pri-/pre-miR-29b-2 and regulates the biogenesis of miR-29b-2 by blocking the recruitment of microprocessor and Dicer to its precursors. Furthermore, we show that down-regulation of miR-29b by YB-1, which is up-regulated in GBM, is important for cell proliferation. Together, our findings reveal a novel function of YB-1 in regulating non-coding RNA expression, which has important implications in tumorigenesis.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , Proteína 1 de Ligação a Y-Box/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Genoma Humano , Genômica , Glioblastoma/enzimologia , Glioblastoma/metabolismo , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/química , Ligação Proteica , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/antagonistas & inibidores , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA