Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 248: 115093, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36645983

RESUMO

Eleven-Nineteen-Leukemia Protein (ENL) containing YEATS domain, a potential drug target, has emerged as a reader of lysine acetylation. SGC-iMLLT bearing with benzimidazole scaffold was identified as an effective ENL inhibitor, but with weak activity against mixed-lineage leukemia (MLL)-rearranged cells proliferation. In this study, a series of compounds were designed and synthesized by structural optimization on SGC-iMLLT. All the compounds have been evaluated for their ENL inhibitory activities. The results showed that compounds 13, 23 and 28 are the most potential ones with the IC50 values of 14.5 ± 3.0 nM, 10.7 ± 5.3 nM, and 15.4 ± 2.2 nM, respectively, similar with that of SGC-iMLLT. They could interact with ENL protein and strengthen its thermal stability in vitro. Among them, compound 28 with methyl phenanthridinone moiety replacement of indazole in SGC-iMLLT, exhibited significantly inhibitory activities towards MV4-11 and MOLM-13 cell lines with IC50 values of 4.8 µM and 8.3 µM, respectively, exhibiting ∼7 folds and ∼9 folds more potent inhibition of cell growth than SGC-iMLLT. It could also increase the ENL thermal stability while SGC-iMLLT had no obvious effect on leukemia cells. Moreover, compound 28 could downregulate the expression of target gene MYC either alone or in combination with JQ-1 in cells, which was more effective than SGC-iMLLT. Besides, in vivo pharmacokinetic studies showed that the PK properties for compound 28 was much improved over that of SGC-iMLLT. These observations suggested compound 28 was a potential ligand for ENL-related MLL chemotherapy.


Assuntos
Leucemia , Fatores de Transcrição , Humanos , Linhagem Celular , Histonas/metabolismo , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Domínios Proteicos , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA