Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Biol Macromol ; 270(Pt 1): 132273, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734348

RESUMO

The basic leucine zipper (bZIP) transcription factors (TFs) function importantly in numerous life processes in plants. However, bZIP members and their biological roles remain unknown in Camelina sativa, a worldwide promising oil crop. Here, 220 CsbZIP proteins were identified in camelina and classified into thirteen groups. Two and 347 pairs of tandem and segmental duplication genes were detected to be underwent purification selection, with segmental duplication as the main driven-force of CsbZIP gene family expansion. Most CsbZIP genes displayed a tissue-specific expression pattern. Particularly, CsbZIP-A12 significantly positively correlated with many FA/oil biosynthesis-related genes, indicating CsbZIP-A12 may regulate lipid biosynthesis. Notably, yeast one-hybrid (Y1H), ß-Glucuronidase (GUS), dual-luciferase (LUC) and EMSA assays evidenced that CsbZIP-A12 located in nucleus interacted with the promoters of CsSAD2-3 and CsFAD3-3 genes responsible for unsaturated fatty acid (UFA) synthesis, thus activating their transcriptions. Overexpression of CsbZIP-A12 led to an increase of total lipid by 3.275 % compared to the control, followed with oleic and α-linolenic acid levels enhanced by 3.4 % and 5.195 %, and up-regulated the expressions of CsSAD2-3, CsFAD3-3 and CsPDAT2-3 in camelina seeds. Furthermore, heterogeneous expression of CsbZIP-A12 significantly up-regulated the expressions of NtSAD2, NtFAD3 and NtPDAT genes in tobacco plants, thereby improving the levels of total lipids and UFAs in both leaves and seeds without negative effects on other agronomic traits. Together, our findings suggest that CsbZIP-A12 upregulates FA/oil biosynthesis by activating CsSAD2-3 and CsFAD3-3 as well as possible other related genes. These data lay a foundation for further functional analyses of CsbZIPs, providing new insights into the TF-based lipid metabolic engineering to increase vegetable oil yield and health-beneficial quality in oilseeds.


Assuntos
Brassicaceae , Ácidos Graxos Insaturados , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/metabolismo , Brassicaceae/genética , Brassicaceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regiões Promotoras Genéticas , Filogenia , Nicotiana/genética , Nicotiana/metabolismo
2.
J Plant Res ; 137(4): 669-683, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38758249

RESUMO

Various environmental stresses induce the production of reactive oxygen species (ROS), which have deleterious effects on plant cells. Glutathione (GSH) is an antioxidant used to counteract reactive oxygen species. Glutathione is produced by glutamylcysteine synthetase (GCS) and glutathione synthetase (GS). However, evidence for the GCS gene in sweetpotato remains scarce. In this study, the full-length cDNA sequence of IbGCS isolated from sweetpotato cultivar Xu18 was 1566 bp in length, which encodes 521 amino acids. The qRT-PCR analysis revealed a significantly higher expression of the IbGCS in sweetpotato flowers, and the gene was induced by salinity, abscisic acid (ABA), drought, extreme temperature and heavy metal stresses. The seed germination rate, root elongation and fresh weight were promoted in T3 Arabidopsis IbGCS-overexpressing lines (OEs) in contrast to wild type (WT) plants under mannitol and salt stresses. In addition, the soil drought and salt stress experiment results indicated that IbGCS overexpression in Arabidopsis reduced the malondialdehyde (MDA) content, enhanced the levels of GCS activity, GSH and AsA content, and antioxidant enzyme activity. In summary, overexpressing IbGCS in Arabidopsis showed improved salt and drought tolerance.


Assuntos
Arabidopsis , Secas , Regulação da Expressão Gênica de Plantas , Glutamato-Cisteína Ligase , Ipomoea batatas , Plantas Geneticamente Modificadas , Arabidopsis/genética , Arabidopsis/fisiologia , Ipomoea batatas/genética , Ipomoea batatas/fisiologia , Ipomoea batatas/enzimologia , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Estresse Salino/genética , Ácido Abscísico/metabolismo , Malondialdeído/metabolismo , Glutationa/metabolismo , Antioxidantes/metabolismo , Germinação/efeitos dos fármacos
3.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673960

RESUMO

The basic leucine zipper (bZIP) transcription factor (TF) family is one of the biggest TF families identified so far in the plant kingdom, functioning in diverse biological processes including plant growth and development, signal transduction, and stress responses. For Perilla frutescens, a novel oilseed crop abundant in polyunsaturated fatty acids (PUFAs) (especially α-linolenic acid, ALA), the identification and biological functions of bZIP members remain limited. In this study, 101 PfbZIPs were identified in the perilla genome and classified into eleven distinct groups (Groups A, B, C, D, E, F, G, H, I, S, and UC) based on their phylogenetic relationships and gene structures. These PfbZIP genes were distributed unevenly across 18 chromosomes, with 83 pairs of them being segmental duplication genes. Moreover, 78 and 148 pairs of orthologous bZIP genes were detected between perilla and Arabidopsis or sesame, respectively. PfbZIP members belonging to the same subgroup exhibited highly conserved gene structures and functional domains, although significant differences were detected between groups. RNA-seq and RT-qPCR analysis revealed differential expressions of 101 PfbZIP genes during perilla seed development, with several PfbZIPs exhibiting significant correlations with the key oil-related genes. Y1H and GUS activity assays evidenced that PfbZIP85 downregulated the expression of the PfLPAT1B gene by physical interaction with the promoter. PfLPAT1B encodes a lysophosphatidate acyltransferase (LPAT), one of the key enzymes for triacylglycerol (TAG) assembly. Heterogeneous expression of PfbZIP85 significantly reduced the levels of TAG and UFAs (mainly C18:1 and C18:2) but enhanced C18:3 accumulation in both seeds and non-seed tissues in the transgenic tobacco lines. Furthermore, these transgenic tobacco plants showed no significantly adverse phenotype for other agronomic traits such as plant growth, thousand seed weight, and seed germination rate. Collectively, these findings offer valuable perspectives for understanding the functions of PfbZIPs in perilla, particularly in lipid metabolism, showing PfbZIP85 as a suitable target in plant genetic improvement for high-value vegetable oil production.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Regulação da Expressão Gênica de Plantas , Perilla frutescens , Proteínas de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação para Baixo/genética , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/biossíntese , Perilla frutescens/genética , Perilla frutescens/metabolismo , Filogenia , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética
4.
Mini Rev Med Chem ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38639277

RESUMO

Aloe-emodin (AE) is an anthraquinone derivative and a biologically active component sourced from various plants, including Rheum palmatum L. and Aloe vera. Known chemically as 1,8-dihydroxy-3-hydroxymethyl-anthraquinone, AE has a rich history in traditional medicine and is esteemed for its accessibility, safety, affordability, and effectiveness. AE boasts multiple biochemical and pharmacological properties, such as strong antibacterial, antioxidant, and antitumor effects. Despite its array of benefits, AE's identity as an anthraquinone derivative raises concerns about its potential for liver and kidney toxicity. Nevertheless, AE is considered a promising drug candidate due to its significant bioactivities and cost efficiency. Recent research has highlighted that nanoformulated AE may enhance drug delivery, biocompatibility, and pharmacological benefits, offering a novel approach to drug design. This review delves into AE's pharmacological impacts, mechanisms, pharmacokinetics, and safety profile, incorporating insights from studies on its nanoformulations. The goal is to outline the burgeoning research in this area and to support the ongoing development and utilization of AE-based therapies.

5.
Haematologica ; 109(7): 2165-2176, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38235512

RESUMO

Sovleplenib (HMPL-523) is a selective spleen tyrosine kinase (Syk) inhibitor with anti-tumor activity in preclinical models of B-cell malignancy. We conducted a dose-escalation and dose-expansion phase I study of sovleplenib in patients with relapsed/ refractory mature B-cell tumors. Dose escalation followed a 3+3 design; patients received oral sovleplenib (200-800 mg once daily [q.d.] or 200 mg twice daily [b.i.d.], 28-day cycles). During dose expansion, patients were enrolled into four cohorts per lymphoma classification and treated at the recommended phase II dose (RP2D) (clinicaltrials gov. Identifier: NCT02857998). Overall, 134 Chinese patients were enrolled (dose escalation, N=27; dose expansion, N=107). Five patients experienced dose-limiting toxicities: one each of amylase increased (200 mg q.d.), febrile neutropenia (800 mg q.d.), renal failure (800 mg q.d.), hyperuricemia and blood creatine phosphokinase increased (200 mg b.i.d.) and blood bilirubin increased and pneumonia (200 mg b.i.d.). RP2D was determined as 600 mg (>65 kg) or 400 mg (≤65 kg) q.d.. The primary efficacy end point of independent review committee-assessed objective response rate in indolent B-cell lymphoma was 50.8% (95% confidence interval: 37.5- 64.1) in 59 evaluable patients at RP2D (follicular lymphoma: 60.5%, marginal zone lymphoma: 28.6%, lymphoplasmacytic lymphoma/Waldenström macroglobulinemia, 0%). The most common (≥10% patients) grade ≥3 treatment-related adverse events in the dose-expansion phase were decreased neutrophil count (29.9%), pneumonia (12.1%) and decreased white blood cell count (11.2%). Pharmacokinetic exposures increased dose-proportionally with ascending dose levels from 200-800 mg, without observed saturation. Sovleplenib showed anti-tumor activity in relapsed/refractory B-cell lymphoma with acceptable safety. Further studies are warranted.


Assuntos
Linfoma de Células B , Inibidores de Proteínas Quinases , Quinase Syk , Humanos , Pessoa de Meia-Idade , Masculino , Feminino , Quinase Syk/antagonistas & inibidores , Idoso , Adulto , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/efeitos adversos , Adulto Jovem , Idoso de 80 Anos ou mais , Resultado do Tratamento , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Dose Máxima Tolerável , Pirazinas/administração & dosagem , Pirazinas/uso terapêutico , Pirazinas/farmacocinética , Pirazinas/efeitos adversos , Recidiva , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Indazóis , Morfolinas
6.
Invest Ophthalmol Vis Sci ; 65(1): 20, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38190127

RESUMO

Purpose: To extend the mutation spectrum and explore the characteristics of genotypes and ocular phenotypes in ectopia lentis (EL). Methods: Variants in all 14 reported EL-associated genes were selected from in-house data sets as well as literature review, and available clinical data were analyzed. Results: Likely pathogenic variants in three genes were identified in 156 unrelated families with EL from the in-house cohort, of which 97.4% resulted from variants in FBN1, whereas the remaining were caused by variants in ADAMTSL4 (1.3%) and LTBP2 (1.3%). A comparative analysis of the in-house data and literature review suggested several characteristics: (1) a higher proportion of cysteine involvement variants in FBN1, either variants introducing or eliminating cysteine, and an earlier diagnosis age were presented in our cohort than in published literature; (2) the axial length (AL) and refractive error increased more rapidly with age in preschool EL children than normal children, and the increased rate of AL was slower in patients with surgery than those without surgery; (3) aberrant astigmatism was common in EL; and (4) worse vision and earlier onset age were observed in patients with non-FBN1 variants (all P < 0.05). Conclusions: Variants in FBN1 are the predominant cause of EL, with the most common cysteine involvement variants. Early-stage EL manifests refractive error but gradually converts to axial myopia through defocus introduced by lens dislocation. Aberrant astigmatism is a suggestive sign of EL. Non-FBN1 variants cause early-onset and severe phenotypes. These results provide evidence for early diagnosis as well as timely treatment for EL.


Assuntos
Astigmatismo , Ectopia do Cristalino , Erros de Refração , Criança , Pré-Escolar , Humanos , Ectopia do Cristalino/genética , Cisteína , Olho , Proteínas de Ligação a TGF-beta Latente
7.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894786

RESUMO

Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step in triacylglycerol (TAG) biosynthesis. However, GPAT members and their functions remain poorly understood in Perilla frutescens, a special edible-medicinal plant with its seed oil rich in polyunsaturated fatty acids (mostly α-linolenic acid, ALA). Here, 14 PfGPATs were identified from the P. frutescens genome and classified into three distinct groups according to their phylogenetic relationships. These 14 PfGPAT genes were distributed unevenly across 11 chromosomes. PfGPAT members within the same subfamily had highly conserved gene structures and four signature functional domains, despite considerable variations detected in these conserved motifs between groups. RNA-seq and RT-qPCR combined with dynamic analysis of oil and FA profiles during seed development indicated that PfGPAT9 may play a crucial role in the biosynthesis and accumulation of seed oil and PUFAs. Ex vivo enzymatic assay using the yeast expression system evidenced that PfGPAT9 had a strong GPAT enzyme activity crucial for TAG assembly and also a high substrate preference for oleic acid (OA, C18:1) and ALA (C18:3). Heterogeneous expression of PfGPAT9 significantly increased total oil and UFA (mostly C18:1 and C18:3) levels in both the seeds and leaves of the transgenic tobacco plants. Moreover, these transgenic tobacco lines exhibited no significant negative effect on other agronomic traits, including plant growth and seed germination rate, as well as other morphological and developmental properties. Collectively, our findings provide important insights into understanding PfGPAT functions, demonstrating that PfGPAT9 is the desirable target in metabolic engineering for increasing storage oil enriched with valuable FA profiles in oilseed crops.


Assuntos
Perilla frutescens , Perilla frutescens/genética , Perilla frutescens/metabolismo , Glicerol/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Ácidos Graxos Insaturados/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/genética , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Óleos de Plantas/metabolismo , Fosfatos/metabolismo
8.
Plants (Basel) ; 12(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570928

RESUMO

Flax is an economic crop with a long history. It is grown worldwide and is mainly used for edible oil, industry, and textiles. Here, we reported a high-quality genome assembly for "Neiya No. 9", a popular variety widely grown in China. Combining PacBio long reads, Hi-C sequencing, and a genetic map reported previously, a genome assembly of 473.55 Mb was constructed, which covers ~94.7% of the flax genome. These sequences were anchored onto 15 chromosomes. The N50 lengths of the contig and scaffold were 0.91 Mb and 31.72 Mb, respectively. A total of 32,786 protein-coding genes were annotated, and 95.9% of complete BUSCOs were found. Through morphological and cytological observation, the male sterility of flax was considered dominant nuclear sterility. Through GWAS analysis, the gene LUSG00017705 (cysteine synthase gene) was found to be closest to the most significant SNP, and the expression level of this gene was significantly lower in male sterile plants than in fertile plants. Among the significant SNPs identified in the GWAS analysis, only two were located in the coding region, and these two SNPs caused changes in the protein encoded by LUSG00017565 (cysteine protease gene). It was speculated that these two genes may be related to male sterility in flax. This is the first time the molecular mechanism of male sterility in flax has been reported. The high-quality genome assembly and the male sterility genes revealed, provided a solid foundation for flax breeding.

9.
Genes (Basel) ; 14(6)2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37372433

RESUMO

Leber hereditary optic neuropathy (LHON) is a monogenic but multifactorial disease vulnerable to environmental triggers. Little is known about how LHON onset changed during the COVID-19 pandemic and how non-pharmaceutical interventions (NPHIs) against COVID-19 impact LHON onset. One hundred and forty-seven LHON patients with the m.11778G>A mutation complaining of vision loss were involved between January 2017 and July 2022. The onset time points, age of onset, and possible risk factors were evaluated. Analyses were conducted among 96 LHON patients in the Pre-COVID-19 group and 51 in the COVID-19 group. The median (IQR) age of onset decreased significantly from 16.65 (13.739, 23.02) in pre-COVID-19 to 14.17 (8.87, 20.29) during COVID-19. Compared with the Pre-COVID-19 group, the COVID-19 group exhibited bimodal distribution with an additional peak at six; the first quarter of 2020 also witnessed a relatively denser onset, with no subsequent second spike. NPHIs against COVID-19 significantly changed patients' lifestyles, including higher secondhand smoke exposure (p < 0.001), adherence to masks (p < 0.001), reduction in time spent outdoors for leisure (p = 0.001), and prolonged screen time (p = 0.007). Multivariate logistic regression revealed that secondhand smoke exposure and mask-wearing were independent risk factors of younger LHON onset. Lower age of onset of LHON appeared after the breakout of the COVID-19 pandemic, and novel risk factors were detected, including secondhand exposure and long mask-wearing. Carriers of LHON mtDNA mutations, especially teenagers or children, should be advised to avoid secondhand smoke exposure and there are possible adverse outcomes of longer mask-wearing.


Assuntos
COVID-19 , Atrofia Óptica Hereditária de Leber , Poluição por Fumaça de Tabaco , Criança , Adolescente , Humanos , Atrofia Óptica Hereditária de Leber/epidemiologia , Atrofia Óptica Hereditária de Leber/genética , Pandemias , DNA Mitocondrial/genética , COVID-19/epidemiologia
10.
Am J Ophthalmol ; 252: 188-204, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36990420

RESUMO

PURPOSE: Senior-Loken syndrome (SLSN) is an autosomal recessive disorder characterized by retinopathy and nephronophthisis. This study aimed to evaluate whether different phenotypes are associated with different variants or subsets of 10 SLSN-associated genes based on an in-house data set and a literature review. DESIGN: Retrospective case series. METHODS: Patients with biallelic variants in SLSN-associated genes, including NPHP1, INVS, NPHP3, NPHP4, IQCB1, CEP290, SDCCAG8, WDR19, CEP164, and TRAF3IP1, were recruited. Ocular phenotypes and nephrology medical records were collected for comprehensive analysis. RESULTS: Variants in 5 genes were identified in 74 patients from 70 unrelated families, including CEP290 (61.4%), IQCB1 (28.6%), NPHP1 (4.2%), NPHP4 (2.9%), and WDR19 (2.9%). The median age at the onset of retinopathy was approximately 1 month (since birth). Nystagmus was the most common initial sign in patients with CEP290 (28 of 44, 63.6%) or IQCB1 (19 of 22, 86.4%) variants. Cone and rod responses were extinguished in 53 of 55 patients (96.4%). Characteristic fundus changes were observed in CEP290- and IQCB1-associated patients. During follow-up, 70 of the 74 patients were referred to nephrology, among whom nephronophthisis was not detected in 62 patients (88.6%) at a median age of 6 years but presented in 8 patients (11.4%) aged approximately 9 years. CONCLUSIONS: Patients with pathogenic variants in CEP290 or IQCB1 presented early with retinopathy, whereas other patients with INVS, NPHP3, or NPHP4 variants first developed nephropathy. Therefore, awareness of the genetic and clinical features may facilitate the clinical management of SLSN, especially early intervention of kidney problems for patients with eyes affected first.


Assuntos
Doenças Renais Císticas , Doenças Retinianas , Humanos , Proteínas de Ligação a Calmodulina/genética , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Mutação , Proteínas/genética , Estudos Retrospectivos , Fatores de Transcrição/genética
11.
Ther Adv Med Oncol ; 14: 17588359221133546, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339926

RESUMO

Background: Savolitinib, a selective MET inhibitor, showed efficacy in patients with non-small cell lung cancer (NSCLC), including pulmonary sarcomatoid carcinoma (PSC), harbouring MET exon 14 skipping alteration (METex14). Objective: To analyse post hoc, the association between circulating tumour DNA (ctDNA) biomarkers and clinical outcomes, including resistance, with savolitinib. Design: A multicentre, single-arm, open-label phase 2 study. Methods: All enrolled patients with baseline plasma samples were included. Outcomes were objective response rate (ORR), progression-free survival (PFS) and overall survival (OS) by baseline METex14 and post-treatment clearance, coexisting gene alterations at baseline and disease progression. Results: Among 66 patients with baseline ctDNA sequencing, 46 (70%) had detectable METex14. Frequent coexisting baseline gene alterations included TP53 and POT1 mutations. Patients with detectable baseline METex14 exhibited worse PFS [hazard ratio (HR), 1.77; 95% confidence interval (CI), 0.88-3.57; p = 0.108] and OS (HR, 3.26; 95% CI, 1.35-7.89; p = 0.006) than those without, despite showing a numerically higher ORR. Among 24 patients with baseline detectable METex14 and evaluable postbaseline samples, 13 achieved METex14 clearance post-treatment. Median time to first clearance was 1.3 months (range, 0.7-1.5). METex14 post-treatment clearance was associated with better ORR (92.3%; 95% CI, 64.0-99.8 versus 36.4%; 95% CI, 10.9-69.2; p = 0.0078), PFS (HR, 0.44; 95% CI, 0.2-1.3; p = 0.1225) and OS (HR, 0.31; 95% CI, 0.1-1.0; p = 0.0397) versus non-clearance. Among 22 patients with disease progression, 10 acquired pathway alterations (e.g. in RAS/RAF and PI3K/PTEN) alone or with secondary MET mutations (D1228H/N and Y1230C/H/S). Conclusion: ctDNA biomarkers may allow for longitudinal monitoring of clinical outcomes with savolitinib in patients with METex14-positive PSC and other NSCLC subtypes. Specifically, undetectable baseline METex14 or post-treatment clearance may predict favourable clinical outcomes, while secondary MET mutations and other acquired gene alterations may explain resistance to savolitinib. Registration: The trial was registered with ClinicalTrials.gov (NCT02897479) on 13 September 2016.

12.
Front Plant Sci ; 13: 854103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693158

RESUMO

Diacylglycerol acyltransferases (DGAT) function as the key rate-limiting enzymes in de novo biosynthesis of triacylglycerol (TAG) by transferring an acyl group from acyl-CoA to sn-3 of diacylglycerol (DAG) to form TAG. Here, two members of the type 3 DGAT gene family, GmDGAT3-1 and GmDGAT3-2, were identified from the soybean (Glycine max) genome. Both of them were predicted to encode soluble cytosolic proteins containing the typical thioredoxin-like ferredoxin domain. Quantitative PCR analysis revealed that GmDGAT3-2 expression was much higher than GmDGAT3-1's in various soybean tissues such as leaves, flowers, and seeds. Functional complementation assay using TAG-deficient yeast (Saccharomyces cerevisiae) mutant H1246 demonstrated that GmDGAT3-2 fully restored TAG biosynthesis in the yeast and preferentially incorporated monounsaturated fatty acids (MUFAs), especially oleic acid (C18:1) into TAGs. This substrate specificity was further verified by fatty-acid feeding assays and in vitro enzyme activity characterization. Notably, transgenic tobacco (Nicotiana benthamiana) data showed that heterogeneous expression of GmDGAT3-2 resulted in a significant increase in seed oil and C18:1 levels but little change in contents of protein and starch compared to the EV-transformed tobacco plants. Taken together, GmDGAT3-2 displayed a strong enzymatic activity to catalyze TAG assembly with high substrate specificity for MUFAs, particularly C18:1, playing an important role in the cytosolic pathway of TAG synthesis in soybean. The present findings provide a scientific reference for improving oil yield and FA composition in soybean through gene modification, further expanding our knowledge of TAG biosynthesis and its regulatory mechanism in oilseeds.

13.
Invest Ophthalmol Vis Sci ; 63(5): 19, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35579903

RESUMO

Purpose: Heterozygous truncating variants of TOPORS have been reported to cause autosomal dominant retinitis pigmentosa (adRP). The purpose of this study was to investigate whether all heterozygous truncating variants, including copy number variants (CNVs), are pathogenic. Methods: TOPORS truncating variants were collected and reviewed through an in-house dataset and existing databases. Individuals with truncating variants underwent ophthalmological evaluation. Results: Six truncating variants were detected in seven families. Three N-terminus truncating variants were detected in three families without RP, and the other three were identified in four unrelated families with typical RP. Based on the in-house dataset and published literature, 17 truncating variants were identified in 47 families with RP. All RP-associated truncating alleles, except one, were distributed in the last exon of TOPORS and clustered in amino acid residues 807 to 867 (46/47, 97.9%). Conversely, in the gnomAD database, only one truncating allele (1/27, 3.7%) was in this region, and the others were outside (26/27, 96.3%), suggesting that the pathogenic truncating variants were significantly clustered in residues 807 to 867 (χ2 = 65.6, P = 1.1 × 10-17). Additionally, three CNVs involving the N-terminus of TOPORS were recorded in control populations but were absent in affected patients. Conclusions: This study suggests that all pathogenic truncating variants of TOPORS were clustered in residues 807 to 867, whereas the truncating variants outside this region and the CNVs involving the N-terminus were not associated with RP. A dominant-negative effect, rather than haploinsufficiency, is speculated to be the underlying pathogenesis. These findings provide valuable information for interpreting variation in TOPORS and other genes in similar situations, especially for CNVs.


Assuntos
Aminoácidos , Proteínas de Neoplasias , Proteínas Nucleares , Retinose Pigmentar , Ubiquitina-Proteína Ligases , Aminoácidos/genética , Análise Mutacional de DNA , Genes Dominantes , Humanos , Proteínas Mutantes/genética , Mutação , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Linhagem , Retinose Pigmentar/genética , Ubiquitina-Proteína Ligases/genética
14.
Plant Sci ; 319: 111243, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35487651

RESUMO

Cyperus esculentus is considered one of the most promising oil crops due to its oil-rich tuber, wide adaptability and large biomass production. Preferable triacylglycerol (TAG) composition, especially high oleic acid content, makes tuber oil suitable for human consumption and biodiesel production. However, the mechanism underlying oleic acid enrichment in the tuber remains unknown. Plastidial stearoyl-ACP desaturase (SAD) catalyses the formation of monounsaturated fatty acids (MUFAs), which may function crucially for high accumulation of oleic acid in C. esculentus tubers. In this study, two full-length cDNAs encoding SAD were isolated from the developing tubers of C. esculentus, namely, CeSAD1 and CeSAD2, with ORFs of 1194 bp and 1161 bp, respectively. Quantitative RT-PCR analysis showed that CeSAD genes were highly expressed in tubers. The expression pattern during tuber formation was also significantly correlated with fatty acid and oil accumulation dynamics. Overexpression of each CeSAD gene could restore the normal growth of the defective yeast BY4389, indicating that both CeSADs had fatty acid desaturase activity to catalyse MUFA biosynthesis. A tobacco genetic transformation assay demonstrated that both CeSAD enzymes had high enzyme activity. Exogenous addition of exogenous fatty acids to feed yeast revealed that CeSAD1 has a more substantial substrate preference ratio for C18:0 than CeSAD2 did. Moreover, the overexpression of CeSAD1 significantly increased host tolerance against low-temperature stress. Our data add new insights into the deep elucidation of oleic acid-enriched oils in Cyperus esculentus tubers, showing CeSAD, especially CeSAD1, as the target gene in genetic modification to increase oil and oleic yields in oil crops as well as stress tolerance.


Assuntos
Cyperus , Ácidos Graxos Dessaturases , Cyperus/genética , Cyperus/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/metabolismo , Óleos/metabolismo , Ácido Oleico/metabolismo , Leveduras/metabolismo
15.
Biotechnol Biofuels Bioprod ; 15(1): 21, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35216635

RESUMO

BACKGROUND: Vernonia galamensis native to Africa is an annual oleaginous plant of Asteraceae family. As a newly established industrial oil crop, this plant produces high level (> 70%) of vernolic acid (cis-12-epoxyoctadeca-cis-9-enoic acid), which is an unusual epoxy fatty acid (EFA) with multiple industrial applications. Here, transcriptome analysis and fatty acid profiling from developing V. galamensis seeds were integrated to uncover the critical metabolic pathways responsible for high EFA accumulation, aiming to identify the target genes that could be used in the biotechnological production of high-value oils. RESULTS: Based on oil accumulation dynamics of V. galamensis seeds, we harvested seed samples from three stages (17, 38, and 45 days after pollination, DAP) representing the initial, fast and final EFA accumulation phases, and one mixed sample from different tissues for RNA-sequencing, with three biological replicates for each sample. Using Illumina platform, we have generated a total of 265 million raw cDNA reads. After filtering process, de novo assembly of clean reads yielded 67,114 unigenes with an N50 length of 1316 nt. Functional annotation resulted in the identification of almost all genes involved in diverse lipid-metabolic pathways, including the novel fatty acid desaturase/epoxygenase, diacylglycerol acyltransferases, and phospholipid:diacylglycerol acyltransferases. Expression profiling revealed that various genes associated with acyl editing, fatty acid ß-oxidation, triacylglycerol assembly and oil-body formation had greater expression levels at middle developmental stage (38 DAP), which were consistent with the fast accumulation of EFA in V. galamensis developing seed, these genes were detected to play fundamental roles in EFA production. In addition, we isolated some transcription factors (such as WRI1, FUS3 and ABI4), which putatively regulated the production of V. galamensis seed oils. The transient expression of the selected genes resulted in a synergistic increase of EFA-enriched TAG accumulation in tobacco leaves. Transcriptome data were further confirmed by quantitative real-time PCR for twelve key genes in EFA biosynthesis. Finally, a comprehensive network for high EFA accumulation in V. galamensis seed was established. CONCLUSIONS: Our findings provide new insights into molecular mechanisms underlying the natural epoxy oil production in V. galamensis. A set of genes identified here could be used as the targets to develop other oilseeds highly accumulating valued epoxy oils for commercial production.

16.
J Environ Manage ; 297: 113273, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34311253

RESUMO

A palmitoleic acid-rich Scenedesmus obliquus strain SXND-02 was isolated from ammonium-containing wastewater. Biomass and lipid production were examined for this microalgal strain in photoautotrophic, heterotrophic, and mixotrophic cultivations, respectively, in order to extend its application in wastewater purification coupled with production of valued bio-products. Among the tested conditions, the microalga had better growth and higher lipid accumulation in mixotrophy. NH4Cl inhibited the microalgal growth in photoautotrophic cultivation. However, NaAc alleviated this inhibition in both heterotrophy and mixotrophy. Using 7 g L-1 NaAc and 0.5 g L-1 NH4Cl as carbon and nitrogen sources significantly increased the algal biomass and lipid yields under mixotrophic cultivation, with the highest levels up to 1.0 g L-1 and 59.88%, respectively. Fatty acid profiling indicated that palmitoleic acid was 23% in the S. obliquus SXND-02 under mixotrophic condition, which was about 21-fold higher than that in the control S. obliquus. Furthermore, this microalgal strain was tested in the chicken farm wastewater (CFW) containing high ammonium. Compared with other treatments, the S. obliquus SXND-02 cultivated in the 1/2 CFW + NaAc medium produced larger amounts of biomass (2.18 g L-1) and lipids (50.22%), and simultaneously higher removal rates of total nitrogen (TN) (80%), total ammonium nitrogen (TAN) (68%), total phosphate (TP) (82%), biological oxygen demand (BOD) (86%) and chemical oxygen demand (COD) (89%) from wastewater. The present data indicate that this excellent microalga can be used in mixotrophic cultivation for wastewater purification coupled with commercial production of valued biomass and high-quality algal oils.


Assuntos
Compostos de Amônio , Microalgas , Scenedesmus , Purificação da Água , Acetatos , Biocombustíveis , Biomassa , Ácidos Graxos Monoinsaturados , Óleos , Águas Residuárias
18.
Biotechnol Biofuels ; 14(1): 76, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33757551

RESUMO

BACKGROUND: Engineering triacylglycerol (TAG) accumulation in vegetative tissues of non-food crops has become a promising way to meet our increasing demand for plant oils, especially the renewable production of biofuels. The most important target modified in this regard is diacylglycerol acyltransferase (DGAT) enzyme responsible for the final rate-limiting step in TAG biosynthesis. Cyperus esculentus is a unique plant largely accumulating oleic acid-enriched oil in its underground tubers. We speculated that DGAT derived from such oil-rich tubers could function more efficiently than that from oleaginous seeds in enhancing oil storage in vegetative tissues of tobacco, a high-yielding biomass crops. RESULTS: Three CeDGAT genes namely CeDGAT1, CeDGAT2-1 and CeDGAT2-2 were identified in C. esculentus by mining transcriptome of developing tubers. These CeDGATs were expressed in tissues tested, with CeDGAT1 highly in roots, CeDGAT2-1 abundantly in leaves, and CeDGAT2-2 predominantly in tubers. Notably, CeDGAT2-2 expression pattern was in accordance with oil dynamic accumulation during tuber development. Overexpression of CeDGAT2-2 functionally restored TAG biosynthesis in TAG-deficient yeast mutant H1246. Oleic acid level was significantly increased in CeDGAT2-2 transgenic yeast compared to the wild-type yeast and ScDGA1-expressed control under culture with and without feeding of exogenous fatty acids. Overexpressing CeDGAT2-2 in tobacco led to dramatic enhancements of leafy oil by 7.15- and 1.7-fold more compared to the wild-type control and plants expressing Arabidopsis seed-derived AtDGAT1. A substantial change in fatty acid composition was detected in leaves, with increase of oleic acid from 5.1% in the wild type to 31.33% in CeDGAT2-2-expressed tobacco and accompanied reduction of saturated fatty acids. Moreover, the elevated accumulation of oleic acid-enriched TAG in transgenic tobacco exhibited no significantly negative impact on other agronomic traits such as photosynthesis, growth rates and seed germination except for small decline of starch content. CONCLUSIONS: The present data indicate that CeDGAT2-2 has a high enzyme activity to catalyze formation of TAG and a strong specificity for oleic acid-containing substrates, providing new insights into understanding oil biosynthesis mechanism in plant vegetative tissues. Overexpression of CeDGAT2-2 alone can significantly increase oleic acid-enriched oil accumulation in tobacco leaves without negative impact on other agronomy traits, showing CeDGAT2-2 as the desirable target gene in metabolic engineering to enrich oil and value-added lipids in high-biomass plants for commercial production of biofuel oils.

19.
Am J Ophthalmol ; 223: 160-168, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33342761

RESUMO

PURPOSE: To reveal the characteristics of ocular changes in patients with biallelic CRB1 mutations. DESIGN: Comparative exome sequencing and retrospective case series on clinical data. METHODS: Seventy-four patients from 63 families with biallelic potential pathogenic variants in CRB1 were selected from our in-house exome sequencing. The clinical data were reviewed and evaluated in detail, including best-corrected visual acuity, fundus photography, optical coherence tomography (OCT), and electroretinogram (ERG). RESULTS: Biallelic CRB1 variants, involving 45 variants including 23 novel, were identified in 40 novel families based on exome sequencing. Analyzing clinical data of the 74 individuals from 63 families revealed the following CRB1-associated phenotypes: (1) early-onset reduced visual acuity with congenital nystagmus; (2) 2 types of characteristic retinal changes including yellowish geographic macular degeneration (YMD) or nummular pigment deposits (NPD) at posterior retina with bone-spicule pigmentation at midperipheral retina; (3) undetectable rod and cone responses on ERG; (4) cystoid macular edema or macular atrophy on OCT. YMD and NPD are unique and CRB1-associated. Long-term follow-up examination as well as age- and variant-dependent phenotypic analysis suggested YMD is the early fundus change that would gradually progress to NPD. CONCLUSIONS: YMD and NPD are 2 major characteristic CRB1-associated fundus changes and the former one will advance to the latter with age. Recognizing such characteristic signs associated with biallelic CRB1 variants may be of value in areas without widespread access to genetic testing where a more targeted approach is needed and might be biomarkers for evaluation of effects for future intervention.


Assuntos
Proteínas do Olho/genética , Atrofia Geográfica/genética , Proteínas de Membrana/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Degeneração Retiniana/genética , Epitélio Pigmentado da Retina/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Análise Mutacional de DNA , Eletrorretinografia , Saúde da Família , Feminino , Angiofluoresceinografia , Fundo de Olho , Estudos de Associação Genética , Testes Genéticos , Atrofia Geográfica/diagnóstico , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Degeneração Retiniana/diagnóstico , Estudos Retrospectivos , Tomografia de Coerência Óptica , Acuidade Visual , Sequenciamento do Exoma
20.
Front Microbiol ; 11: 584589, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391203

RESUMO

Palmitoleic acid (16:1Δ9) possesses a double bond at the seventh carbon atom from methyl end of the acyl chain and belongs to unusual ω-7 monounsaturated fatty acids with broad applications in food, pharmaceuticals, cosmetics, biofuel, and other industries. This high-value fatty acid accumulates up to >40% of total lipid in the marine diatom Phaeodactylum tricornutum. The present study was conducted to determine the key gene responsible for 16:1Δ9 biosynthesis in this unicellular alga. A new full-length cDNA and genomic DNA encoding acyl-ACP Δ9 desaturase (PtAAD) were isolated from P. tricornutum cells. Expression levels of PtAAD gene under normal and stress culture conditions were both positively correlated with 16:1Δ9 accumulation, implying its potential role for fatty acid determination. Functional complementation assay of a yeast mutant strain BY4839 evidenced that PtAAD could restore the synthesis of unsaturated fatty acid, especially generating high levels of 16:1Δ9. Further transient expression of PtAAD gene in Nicotiana benthamiana leaves was accompanied by the accumulation of 16:1Δ9, which was absent from control groups. Three-dimensional structure modeling studies showed that functional domain of PtAAD contained three variant amino acids (F160, A223, and L156), which may narrow the space shape of substrate-binding cavity to ensure the entry of 16:0-ACP. Consistent with this prediction, the mutated version of PtAAD gene (F160L, A223T, and L156M) in N. benthamiana systems failed to accumulate 16:1Δ9, but increased levels of 18:1Δ9. Taken together, PtAAD exhibits a strong enzymatic activity and substrate preference for 16:0-ACP, acting as the key player for high biosynthesis and accumulation of 16:1Δ9 in this alga. These findings provide new insights for better understanding the palmitoleic acid and oil biosynthetic mechanism in P. tricornutum, indicating that PtAAD gene may have practical applications for enriching palmitoleic acid and oil yield in other commercial oleaginous algae and crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA