Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(9): e0205124, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39162526

RESUMO

Protein disulfide isomerase, containing thioredoxin (Trx) domains, serves as a vital enzyme responsible for oxidative protein folding (the formation, reduction, and isomerization of disulfide bonds in newly synthesized proteins) in the endoplasmic reticulum (ER). However, the role of ER-localized PDI proteins in parasite growth and their interaction with secretory proteins remain poorly understood. In this study, we identified two ER-localized PDI proteins, TgPDI8 and TgPDI6, in Toxoplasma gondii. Conditional knockdown of TgPDI8 resulted in a significant reduction in intracellular proliferation and invasion abilities, leading to a complete block in plaque formation on human foreskin fibroblast monolayers, whereas parasites lacking TgPDI6 did not exhibit any apparent fitness defects. The complementation of TgPDI8 with mutant variants highlighted the critical role of the CXXC active site cysteines within its Trx domains for its enzymatic activity. By utilizing TurboID-based proximity labeling, we uncovered a close association between PDI proteins and canonical secretory proteins. Furthermore, parasites lacking TgPDI8 showed a significant reduction in the expression of secretory proteins, especially those from micronemes and dense granules. In summary, our study elucidates the roles of TgPDI8 and sets the stage for future drug discovery studies. IMPORTANCE: Apicomplexans, a phylum of intracellular parasites, encompass various zoonotic pathogens, including Plasmodium, Cryptosporidium, Toxoplasma, and Babesia, causing a significant economic burden on human populations. These parasites exhibit hypersensitivity to disruptions in endoplasmic reticulum (ER) redox homeostasis, necessitating the presence of ER-localized thioredoxin (Trx) superfamily proteins, particularly protein disulfide isomerase (PDI), for proper oxidative folding. However, the functional characteristics of ER-localized PDI proteins in Toxoplasma gondii remain largely unexplored. In this study, we identified two ER-localized proteins, namely, TgPDI8 and TgPDI6, and demonstrated the indispensable role of TgPDI8 in parasite survival. Through a comprehensive multi-omics analysis, we elucidated the crucial role of TgPDI8 in the processing of secretory proteins in T. gondii. Additionally, we introduced a novel ER-anchored TurboID method to label and identify canonical secretory proteins in T. gondii. This research opens up new avenues for understanding oxidative folding and the secretory pathway in apicomplexan parasites, laying the groundwork for future advancements in antiparasitic drug development.


Assuntos
Retículo Endoplasmático , Isomerases de Dissulfetos de Proteínas , Proteínas de Protozoários , Toxoplasma , Toxoplasma/genética , Toxoplasma/enzimologia , Toxoplasma/metabolismo , Toxoplasma/crescimento & desenvolvimento , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Humanos , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Retículo Endoplasmático/metabolismo , Fibroblastos/parasitologia , Fibroblastos/metabolismo
2.
Microbiol Spectr ; 12(1): e0222723, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38059627

RESUMO

IMPORTANCE: Staphylococcus aureus is a Gram-positive opportunistic bacterium that is responsible for the majority of skin infections in humans. Our study provides important molecular insights into the pathogenesis of S. aureus skin infections and identifies a potential therapeutic target for the treatment of these infections. Our findings also indicate that ß-hemolysin (Hlb) secreted by colonized S. aureus is a risk factor for epidermal growth factor receptor (EGFR)-related diseases by acting as an agonist of EGFR. The neutralized monoclonal antibody we have developed for the first time will provide a functional inhibitor of Hlb. This study provides important insights to better understand the relationship between the skin colonization of S. aureus and inflammatory skin diseases.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/metabolismo , Proteínas Hemolisinas/metabolismo , Pele/microbiologia , Receptores ErbB/metabolismo , Infecções Estafilocócicas/microbiologia , Inflamação/patologia
3.
Infect Immun ; 86(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29440368

RESUMO

Coccidiosis, caused by different species of Eimeria parasites, is an economically important disease of poultry and livestock worldwide. Here we report previously unknown alterations in the gut microbes and metabolism of BALB/c mice infected with Eimeria falciformis Specifically, we observed a significant shift in the abundance of cecal bacteria and disrupted metabolism in parasitized animals. The relative abundances of Lachnospiraceae bacterium NK4A136, Ruminiclostridium, Alistipes, and Lactobacillus declined in response to E. falciformis infection, whereas Escherichia, Shigella, Helicobacter, Klebsiella, and Bacteroides were increased. Carbohydrate and amino acid metabolites in the serum samples of infected mice were significantly altered compared to naïve controls. Levels of amino acids, including asparagine, histidine, l-cysteine, tryptophan, lysine, glycine, serine, alanine, proline, ornithine, methionine, and valine, decreased on day 7 postinfection before returning to baseline on day 14. In addition, increased levels of indolelactate and mannitol and a reduced amount of oxalic acid indicated impaired carbon metabolism upon parasitic infection. These data demonstrate that intestinal coccidial infection perturbs the microbiota and disrupts carbon and nitrogen metabolism.


Assuntos
Coccidiose/fisiopatologia , Eimeria/patogenicidade , Microbioma Gastrointestinal/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Redes e Vias Metabólicas/fisiologia , Animais , Camundongos , Camundongos Endogâmicos BALB C
4.
EMBO J ; 36(21): 3250-3267, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29030485

RESUMO

Toxoplasma gondii encodes three protein kinase A catalytic (PKAc1-3) and one regulatory (PKAr) subunits to integrate cAMP-dependent signals. Here, we show that inactive PKAc1 is maintained at the parasite pellicle by interacting with acylated PKAr. Either a conditional knockdown of PKAr or the overexpression of PKAc1 blocks parasite division. Conversely, down-regulation of PKAc1 or stabilisation of a dominant-negative PKAr isoform that does not bind cAMP triggers premature parasite egress from infected cells followed by serial invasion attempts leading to host cell lysis. This untimely egress depends on host cell acidification. A phosphoproteome analysis suggested the interplay between cAMP and cGMP signalling as PKAc1 inactivation changes the phosphorylation profile of a putative cGMP-phosphodiesterase. Concordantly, inhibition of the cGMP-dependent protein kinase G (PKG) blocks egress induced by PKAc1 inactivation or environmental acidification, while a cGMP-phosphodiesterase inhibitor circumvents egress repression by PKAc1 or pH neutralisation. This indicates that pH and PKAc1 act as balancing regulators of cGMP metabolism to control egress. These results reveal a crosstalk between PKA and PKG pathways to govern egress in T. gondii.


Assuntos
3',5'-GMP Cíclico Fosfodiesterases/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/genética , Interações Hospedeiro-Parasita , Proteínas de Protozoários/genética , Toxoplasma/genética , 3',5'-GMP Cíclico Fosfodiesterases/metabolismo , Acilação , Linhagem Celular Transformada , AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Fibroblastos/parasitologia , Regulação da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Estágios do Ciclo de Vida/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/metabolismo
5.
Traffic ; 14(8): 895-911, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23638681

RESUMO

The advent of techniques to study palmitoylation on a whole proteome scale has revealed that it is an important reversible modification that plays a role in regulating multiple biological processes. Palmitoylation can control the affinity of a protein for lipid membranes, which allows it to impact protein trafficking, stability, folding, signalling and interactions. The publication of the palmitome of the schizont stage of Plasmodium falciparum implicated a role for palmitoylation in host cell invasion, protein export and organelle biogenesis. However, nothing is known so far about the repertoire of protein S-acyl transferases (PATs) that catalyse this modification in Apicomplexa. We undertook a comprehensive analysis of the repertoire of Asp-His-His-Cys cysteine-rich domain (DHHC-CRD) PAT family in Toxoplasma gondii and Plasmodium berghei by assessing their localization and essentiality. Unlike functional redundancies reported in other eukaryotes, some apicomplexan-specific DHHCs are essential for parasite growth, and several are targeted to organelles unique to this phylum. Of particular interest is DHHC7, which localizes to rhoptry organelles in all parasites tested, including the major human pathogen P. falciparum. TgDHHC7 interferes with the localization of the rhoptry palmitoylated protein TgARO and affects the apical positioning of the rhoptry organelles. This PAT has a major impact on T. gondii host cell invasion, but not on the parasite's ability to egress.


Assuntos
Acetiltransferases/metabolismo , Plasmodium berghei/enzimologia , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Acetiltransferases/química , Acetiltransferases/genética , Motivos de Aminoácidos , Técnicas de Cultura de Células , Deleção de Genes , Genoma de Protozoário , Humanos , Filogenia , Plasmodium berghei/patogenicidade , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Toxoplasma/patogenicidade
6.
Exp Parasitol ; 127(1): 100-6, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20599437

RESUMO

African trypanosomes are flagellated unicellular parasites which proliferate extracellularly in the mammalian host blood-stream and tissue spaces. They evade the hosts' antibody-mediated lyses by sequentially changing their variant surface glycoprotein (VSG). VSG tightly coats the entire parasite body, serving as a physical barrier. In Trypanosoma brucei and the closely related species Trypanosoma evansi, Trypanosoma equiperdum, each VSG polypeptide can be divided into N- and C-terminal domains, based on cysteine distribution and sequence homology. N-terminal domain, the basis of antigenic variation, is hypervariable and contains all the exposed epitopes; C-terminal domain is relatively conserved and a full set of four or eight cysteines were generally observed. We cloned two genes from two distinct variants of T. evansi, utilizing RT-PCR with VSG-specific primers. One contained a VSG type A N-terminal domain followed a C-terminal domain lacking cysteine residues. To confirm that this gene is expressed as a functional VSG, the expression and localization of the corresponding gene product were characterized using Western blotting and immunofluorescent staining of living trypanosomes. Expression analysis showed that this protein was highly expressed, variant-specific, and had a ubiquitous cellular surface localization. All these results indicated that it was expressed as a functional VSG. Our finding showed that cysteine residues in VSG C-terminal domain were not essential; the conserved C-terminal domain generally in T. brucei like VSGs would possibly evolve for regulating the VSG expression.


Assuntos
Trypanosoma/química , Glicoproteínas Variantes de Superfície de Trypanosoma/química , Sequência de Aminoácidos , Animais , Western Blotting , Búfalos , Clonagem Molecular , Cisteína/química , Eletroforese em Gel de Poliacrilamida , Feminino , Regulação da Expressão Gênica , Soros Imunes/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microscopia de Fluorescência , Dados de Sequência Molecular , Coelhos , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Trypanosoma/genética , Trypanosoma/imunologia , Tripanossomíase/parasitologia , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA