Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 258(Pt 1): 128520, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040150

RESUMO

In this study, we developed an enhanced heterogeneous interface intelligent conductive hydrogel NH3 sensor for individualized treatment of infected wounds. The sensor achieved monitoring, self-diagnosis, and adaptive gear adjustment functions. The PPY@PDA/PANI(3/6) sensor had a minimum NH3 detection concentration of 50 ppb and a response value of 2.94 %. It also had a theoretical detection limit of 49 ppt for infected wound gas. The sensor exhibited a fast response time of 23.2 s and a recovery time of 42.9 s. Tobramycin (TOB) was encapsulated in a self-healing QCS/OD hydrogel formed by quaternized chitosan (QCS) and oxidized dextran (OD), followed by the addition of polydopamine-coated polypyrrole nanowires (PPY@PDA) and polyaniline (PANI) to prepare electrically conductive drug-loaded PPY@PDA/PANI hydrogels. The drug-loaded PPY@PDA/PANI hydrogel was combined with a PANI/PVDF membrane to form an enhanced heterogeneous interfacial PPY@PDA/PANI/PVDF-based sensor, which could adaptively learn the individual wound ammonia response and adjust the speed of drug release from the PPY@PDA/PANI hydrogel with electrical stimulation. Drug release and animal studies demonstrated the efficacy of the PPY@PDA/PANI hydrogel in inhibiting infection and accelerating wound healing. In conclusion, the gas-sensitive conductive hydrogel sensing system is expected to enable intelligent drug delivery and provide personalized treatment for complex wound management.


Assuntos
Quitosana , Polímeros de Fluorcarboneto , Polímeros , Polivinil , Animais , Hidrogéis/farmacologia , Pirróis
2.
ACS Sens ; 4(4): 1081-1089, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30912423

RESUMO

Breath analysis has been considered a noninvasive, safe, and reliable way to diagnose cancer at very early stage. Rapid detection of cancer volatile markers in breath samples via a portable sensing device will lay the foundation of future early cancer diagnosis. Nevertheless, unsatisfactory sensitivity and specificity of these sensing devices restrain the clinical application of breath analysis. Herein, we proposed the strategy of designing the light-regulated electrochemical reaction assisted core-shell heterostructure to address the issue of concern; that is, the photoactive shell will be designed for trigging the light-regulated electrochemical reaction and enhancing the sensitivity while a catalytic active core will play the function of removing interference gases. After screening of various core candidates, Fe2O3 was found to exhibit relatively low conversion rate to 3-methylhexane, which is one of the representative volatile markers for breath analysis, suggesting that mutual interference would be eliminated by Fe2O3. Based on this assumption, an electrochemical sensor comprising core-shell Fe2O3@ZnO-SE (vs Mn-based RE) was fabricated and sensing properties to 6 kinds of volatile markers was evaluated. Interestingly, the thickness of ZnO shell significantly influenced the response behavior; typically, the Fe2O3@ZnO with shell thickness of 4.8 nm offers the sensor high selectivity to 3-methylhexane. In contrast, significantly mutual response interference is observed for the Fe2O3@ZnO with extremely thick/thin shell. Particularly, sensing properties are greatly enhanced upon illumination; a detection limit to 3-methylhexane can even be as low as 0.072 ppm which will be useful in clinic application. Besides, the high selectivity of the sensor to 3-methylhexane is further confirmed by the testing of simulated breath samples. In summary, we anticipate that the strategy proposed in this research will be a starting point for artificially tailoring the sensitivity and selectivity of future sensing devices.


Assuntos
Testes Respiratórios/métodos , Técnicas Eletroquímicas/métodos , Compostos Férricos/química , Compostos Orgânicos Voláteis/análise , Óxido de Zinco/química , Biomarcadores Tumorais/análise , Humanos , Luz , Limite de Detecção , Óxido de Zinco/efeitos da radiação
3.
Sensors (Basel) ; 17(3)2017 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-28287492

RESUMO

A new strategy to discriminate four types of hazardous gases is proposed in this research. Through modulating the operating temperature and the processing response signal with a pattern recognition algorithm, a gas sensor consisting of a single sensing electrode, i.e., ZnO/In2O3 composite, is designed to differentiate NO2, NH3, C3H6, CO within the level of 50-400 ppm. Results indicate that with adding 15 wt.% ZnO to In2O3, the sensor fabricated at 900 °C shows optimal sensing characteristics in detecting all the studied gases. Moreover, with the aid of the principle component analysis (PCA) algorithm, the sensor operating in the temperature modulation mode demonstrates acceptable discrimination features. The satisfactory discrimination features disclose the future that it is possible to differentiate gas mixture efficiently through operating a single electrode sensor at temperature modulation mode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA