Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 9(8): 4940-4952, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37530388

RESUMO

Osteosarcoma (OS) is a malignant bone tumor that threatens human health. Surgical removal of the tumor and followed by implantation with a graft is the golden standard for its clinical treatment. However, avoiding recurrence by enhancing the antitumor properties of the implants and improving osteogenesis around the implants remain a challenge. Here, we developed a layered double hydroxide (LDH)-coated magnesium (Mg) alloy and loaded it with celastrol. The celastrol-loaded Mg alloy exhibited enhanced corrosion resistance and sustained release of celastrol. In vitro cell culture suggested that the modified Mg alloy loaded with an appropriate amount of celastrol significantly inhibited the proliferation and migration of bone tumor cells while having little influence on normal cells. A mechanistic study revealed that the celastrol-loaded Mg alloy upregulated reactive oxygen species (ROS) generation in bone tumor cells, resulting in mitochondrial dysfunction due to reduced membrane potential, thereby inducing bone tumor cell apoptosis. Furthermore, it was found that celastrol-induced autophagy in tumor cells inhibited cell apoptosis in the initial 6 h. After ≥12 h of culture, inhibition of the PI3K-Akt-mTOR signaling pathway was noted, resulting in excessive autophagy in tumor cells, finally causing cell apoptosis. The celatsrol-loaded Mg alloy also exhibited effective antitumor properties in a subcutaneous tumor model. In vitro tartrate-resistant acid phosphatase (TRAP) staining and gene expression results revealed that the modified Mg alloy reduced the viability of osteoclasts, inducing a potential pathway for the increased bone regeneration around the modified Mg alloy seen in vivo. Together, the results of our study show that the celatsrol-loaded Mg alloy might be a promising implant for treating OS.

2.
ACS Biomater Sci Eng ; 8(3): 1271-1278, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35143178

RESUMO

One of the major challenges for Ti-based implants is insufficient osteointegration, which might result in the loosening of the implant. In this study, we fabricated strontium (Sr)-containing barium titanate (BST) on the surface of Ti to improve the bioactivity for osteointegration enhancement. The introduction of Sr significantly reduced the crystallization time and improved crystallinity, which was proved by X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. Compared with Ti, the BST film showed greater wettability surface and lower elastic modulus and hardness. Furthermore, in synergy with the release of Sr ions, the BST film improved early adhesion and followed osteogenic differentiation of rat bone mesenchymal stem cells. Furthermore, the bone implantation experiment suggested that the BST film could significantly improve the in vivo osteogenesis and osteointegration capabilities of Ti implants. In summary, this study revealed that BST-modified Ti has potential application in bone repair.


Assuntos
Células-Tronco Mesenquimais , Titânio , Animais , Bário , Osteogênese , Ratos , Estrôncio/química , Estrôncio/farmacologia , Titânio/química , Titânio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA