Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
2.
J Asian Nat Prod Res ; : 1-10, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869213

RESUMO

Liquiritigenin is a natural medicine. However, its inhibitory effect and its potential mechanism on bladder cancer (BCa) remain to be explored. It was found that it could be visualized that the transplanted tumours in the low-dose liquiritigenin -treated group and the high-dose liquiritigenin -treated group were smaller than those in the model group. Liquiritigenin treatment led to alterations in Lachnoclostridium, Escherichia-Shigella, Alistipes and Akkermansia. Non-targeted metabolomics analysis showed that a total of multiple differential metabolites were identified between the model group and the high-dose liquiritigenin-treated group. This provides a new direction and rationale for the antitumour effects of liquiritigenin.

3.
MedComm (2020) ; 5(6): e547, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38764726

RESUMO

Cancer is a disease with molecular heterogeneity that is closely related to gene mutations and epigenetic changes. The principal histological subtype of lung cancer is non-small cell lung cancer (NSCLC). Long noncoding RNA (lncRNA) is a kind of RNA that is without protein coding function, playing a critical role in the progression of cancer. In this research, the regulatory mechanisms of lncRNA phosphorylase kinase regulatory subunit alpha 1 antisense RNA 1 (PHKA1-AS1) in the progression of NSCLC were explored. The increased level of N6-methyladenosine (m6A) modification in NSCLC caused the high expression of PHKA1-AS1. Subsequently, high-expressed PHKA1-AS1 significantly facilitated the proliferation and metastasis of NSCLC cells, and these effects could be reversed upon the inhibition of PHKA1-AS1 expression, both in vivo and in vitro. Additionally, the target protein of PHKA1-AS1 was actinin alpha 4 (ACTN4), which is known as an oncogene. Herein, PHKA1-AS1 could enhance the protein stability of ACTN4 by inhibiting its ubiquitination degradation process, thus exerting the function of ACTN4 in promoting the progress of NSCLC. In conclusion, this research provided a theoretical basis for further exploring the potential mechanism of NSCLC metastasis and searching novel biomarkers related to the pathogenesis and progression of NSCLC.

4.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1028-1043, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621910

RESUMO

This study aims to decipher the mechanism of Buzhong Yiqi Decoction(BZYQD) in the treatment of spleen deficiency syndrome via gut microbiota. The mouse models of spleen deficiency syndrome were established by fecal microbiota transplantation(FMT, from patients with spleen deficiency syndrome) and administration of Sennae Folium(SF, 10 g·kg~(-1)), respectively, and treated with BZYQD for 5 d. The pseudosterile mice(administrated with large doses of antibiotics) and the mice transplanted with fecal bacteria from healthy human were taken as the controls. The levels of IgA, interleukin(IL)-2, IL-1ß, interferon(IFN)-γ, tumor necrosis factor-alpha(TNF-α), and 5-hydroxytryptamine(5-HT) in the intestinal tissue of two models were measured by enzyme-linked immunosorbent assay, and the CD8~+/CD3~+ ratio was determined by flow cytometry. The composition and changes of the gut microbiota were determined by 16S rRNA high-throughput sequencing and qPCR. Furthermore, the correlation analysis was performed to study the mediating role of gut microbiota in the treatment. The results showed that BZYQD elevated the IgA level, lowered the IL-1ß, TNF-α, and 5-HT levels, and decreased the CD8~+/CD3~+ ratio in the intestinal tissue of the two models. Moreover, BZYQD had two-way regulatory effects on the levels of IL-2 and IFN-γ. BZYQD inhibited the overgrowth and reduced the richness of gut microbiota in the SF model, and improved the gut microbiota structure in the two models. Algoriphagus, Mycobacterium, and CL500_29_marine_group were the common differential genera in the two models compared with the control. Acinetobacter, Parabacteroides, and Ruminococcus were the differential genera unique to the FMT model, and Sphingorhabdus, Lactobacillus, and Anaeroplasma were the unique differential genera in the SF model. BZYQD was capable of regulating all these genera. The qPCR results showed that BZYQD increased the relative abundance of Akkermansia muciniphila and decreased that of Bacteroides uniformis in the two models. The correlation analysis revealed that the levels of above intestinal cytokines were significantly correlated with characteristic gut microorganisms in different mo-dels. The IL-1ß level had a significantly positive correlation with Acinetobacter and CL500_29_marine_group in the two models, while the different levels of IL-2 and IFN-γ in the two models may be related to its different gut microbiota structures. In conclusion, BZYQD could regulate the disordered gut microbiota structure in different animal models of spleen deficiency syndrome to improve the intestinal immune status, which might be one of the mechanisms of BZYQD in treating spleen deficiency syndrome.


Assuntos
Microbioma Gastrointestinal , Baço , Humanos , Camundongos , Animais , Fator de Necrose Tumoral alfa/farmacologia , RNA Ribossômico 16S/genética , Interleucina-2/farmacologia , Serotonina , Imunoglobulina A/farmacologia
5.
Front Pharmacol ; 15: 1348076, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572428

RESUMO

Cancer stands as a prominent global cause of death. One of the key reasons why clinical tumor chemotherapy fails is multidrug resistance (MDR). In recent decades, accumulated studies have shown how Natural Product-Derived Compounds can reverse tumor MDR. Discovering novel potential modulators to reduce tumor MDR by Natural Product-Derived Compounds has become a popular research area across the globe. Numerous studies mainly focus on natural products including flavonoids, alkaloids, terpenoids, polyphenols and coumarins for their MDR modulatory activity. Natural products reverse MDR by regulating signaling pathways or the relevant expressed protein or gene. Here we perform a deep review of the previous achievements, recent advances in the development of natural products as a treatment for MDR. This review aims to provide some insights for the study of multidrug resistance of natural products.

6.
World J Clin Cases ; 12(7): 1320-1325, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38524521

RESUMO

BACKGROUND: Developmental dysplasia of the hip (DDH) is a common osteoarticular deformity in pediatric orthopedics. A patient with bilateral DDH was diagnosed and treated using our improved technique "(powerful overturning acetabuloplasty)" combined with femoral rotational shortening osteotomy. CASE SUMMARY: A 4-year-old girl who was diagnosed with bilateral DDH could not stand normally, and sought surgical treatment to solve the problem of double hip extension and standing. As this child had high dislocation of the hip joint and the acetabular index was high, we changed the traditional acetabuloplasty to "powerful turnover acetabuloplasty" combined with femoral rotation shortening osteotomy. During the short-term postoperative follow-up (1, 3, 6, 9, 12, and 15 months), the child had no discomfort in her lower limbs. After the braces and internal fixation plates were removed, formal rehabilitation training was actively carried out. CONCLUSION: Our "powerful overturning acetabuloplasty" combined with femoral rotational shortening osteotomy is feasible in the treatment of DDH in children. This technology may be widely used in the clinic.

7.
8.
iScience ; 26(12): 108359, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38034350

RESUMO

To explore the safety and efficacy of thoracic endovascular aortic repair (TEVAR) in the treatment of patients with type B aortic dissection, and to evaluate the risk factors for long-term mortality. Our study retrospectively evaluated 729 patients with type B aortic dissection, who were divided into the thoracic endovascular aortic repair group and the optimal medical treatment group according to their treatment. In-hospital mortality, death within 30 days, and aortic-related mortality were lower in the thoracic endovascular aortic repair group than in the optimal medical treatment group (p < 0.05). The cumulative overall survival rates for the thoracic endovascular aortic repair group at 1 year, 5 years, and 10 years were 92.5%, 84.1%, and 73.5%, respectively. The Cox analysis found that TEVAR was beneficial in reducing mortality and that a vertical length of the dissection exceeding 150 mm was a risk factor for mortality.

9.
Hortic Res ; 10(10): uhad177, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37868621

RESUMO

The hormone ethylene is crucial in the regulation of ripening in climacteric fruit, such as bananas. The transcriptional regulation of ethylene biosynthesis throughout banana fruit ripening has received much study, but the cascaded transcriptional machinery of upstream transcriptional regulators implicated in the ethylene biosynthesis pathway is still poorly understood. Here we report that ethylene biosynthesis genes, including MaACS1, MaACO1, MaACO4, MaACO5, and MaACO8, were upregulated in ripening bananas. NAC (NAM, ATAF, CUC) transcription factor, MaNAC083, a ripening and ethylene-inhibited gene, was discovered as a potential binding protein to the MaACS1 promoter by yeast one-hybrid screening. Further in vitro and in vivo experiments indicated that MaNAC083 bound directly to promoters of the five ethylene biosynthesis genes, thereby transcriptionally repressing their expression, which was further verified by transient overexpression experiments, where ethylene production was inhibited through MaNAC083-modulated transcriptional repression of ethylene biosynthesis genes in banana fruits. Strikingly, MaMADS1, a ripening-induced MADS (MCM1, AGAMOUS, DEFICIENS, SRF4) transcription factor, was found to directly repress the expression of MaNAC083, inhibiting trans-repression of MaNAC083 to ethylene biosynthesis genes, thereby attenuating MaNAC083-repressed ethylene production in bananas. These findings collectively illustrated the mechanistic basis of a MaMADS1-MaNAC083-MaACS1/MaACOs regulatory cascade controlling ethylene biosynthesis during banana fruit ripening. These findings increase our knowledge of the transcriptional regulatory mechanisms of ethylene biosynthesis at the transcriptional level and are expected to help develop molecular approaches to control ripening and improve fruit storability.

10.
Life Sci ; 331: 122042, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37634815

RESUMO

AIMS: Memory impairment is a major clinical manifestation in Alzheimer's disease (AD) patients, while regular exercise may prevent and delay degenerative changes in memory functions, and our aim is to explore the influence and molecular mechanisms of aerobic exercise on the early stages of Alzheimer's disease. MAIN METHODS: 3-month-old male APP/PS1 transgenic AD mice and C57BL/6J wild-type mice were randomly divided into four groups: wild-type and APP/PS1 mice with sedentary (WT-SED, AD-SED), and running (WT-RUN, AD-RUN) for 12-weeks. The spatial learning and memory function, RNA-sequencing, spine density, synaptic associated protein, mRNA and protein expression involved in G protein-coupled receptor 81 (GPR81) signaling pathway, and complement factors in brain were measured. KEY FINDINGS: Aerobic exercise improved spatial learning and memory in APP/PS1 mice, potentially attributed to increased dendritic spine density. Subsequently, potential underlying mechanisms were identified through RNA sequencing: regular aerobic exercise could activate the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) cAMP/PKA signaling pathway and upregulate synaptic function-related proteins to promote synaptic growth, possibly by modulating GPR81. Notably, regular aerobic exercise inhibited microglial activation, reversed the microglial phenotype, reduced the production of initiation factor C1q and central factor C3 in the complement cascade in the brain, prevented the colocalization of microglia and PSD-95, and thus prevented synaptic loss. SIGNIFICANCE: Physical exercise could play a critical role in improving cognitive function in AD by promoting synaptic growth and preventing synaptic loss, which may be related to the regulation of the GPR81/cAMP/PKA signaling pathway and inhibition of complement-mediated microglial phagocytosis of synapses.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Masculino , Animais , Lactente , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais , Proteínas do Sistema Complemento , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Homeostase , Modelos Animais de Doenças , Hipocampo/metabolismo , Presenilina-1
12.
J Appl Microbiol ; 134(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37401132

RESUMO

AIM: This study aimed to use one strain many compounds approach (OSMAC) to investigate the cytotoxic potential of Aspergillus terreus associated with soybean versus several cancer cell lines, by means of in-silico and in vitro approaches. METHODS AND RESULTS: Fermentation of the isolated strain was done on five media. The derived extracts were investigated for their inhibitory activities against three human cancer cell lines; mammary gland breast cancer (MCF-7), colorectal adenocarcinoma (Caco-2), and hepatocellular carcinoma (HepG2) using MTT Assay. The fungal mycelia fermented in Modified Potato Dextrose Broth (MPDB) was the most cytotoxic extract against HepG2, MCF-7, and Caco-2 cell lines with IC50 4.2 ± 0.13, 5.9 ± 0.013 and 7.3 ± 0.004 µg mL-1, respectively. MPDB extract was scaled up resulting in the isolation of six metabolites; three fatty acids (1, 2, and 4), one sterol (3) and two butenolides (5 and 6) by column chromatography. The isolated compounds (1-6) were screened through a molecular docking approach for their binding aptitude to various active sites. butyrolactone-I (5) revealed a significant interaction within the CDK2 active site, while aspulvinone E (6) showed promising binding affinity to FLT3 and EGFR active sites that was confirmed by in vitro CDK2, FLT3 and EGFR inhibitory activity. Finally, the in vitro cytotoxic activities of butyrolactone-I (5) and aspulvinone E (6) revealed the antiproliferative activity of butyrolactone-I (5), against HepG2 cell line (IC50 = 17.85 ± 0.32 µM). CONCLUSION: Molecular docking analysis and in vitro assays suggested the CDK2/A2 inhibitory potential of butyrolactone-I (5) in addition to the promising interaction abilities of aspulvinone E (6) with EGFR and FLT3 active sites as a possible mechanism of their biological activities.


Assuntos
Antineoplásicos , Glycine max , Humanos , Simulação de Acoplamento Molecular , Glycine max/metabolismo , Células CACO-2 , Aspergillus/metabolismo , Antineoplásicos/metabolismo , Extratos Vegetais/farmacologia , Receptores ErbB/metabolismo , Receptores ErbB/farmacologia , Estrutura Molecular , Proliferação de Células
13.
Heliyon ; 9(5): e16158, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37215793

RESUMO

Non-coding RNAs are crucial for cancer progression, among which miR-34c-3p has been demonstrated to be a tumor suppressor in non-small cell lung cancer (NSCLC). In this study, we attempt to identify flavonoids that can up-regulate miR-34c-3p expression, evaluate the anticancer activity of the flavonoids and explore its underlying mechanism in NSCLC cells. Six flavonoids were screened by RT-qPCR and we found that jaceosidin significantly increased miR-34c-3p expression in A549 cells. We found that jaceosidin inhibited the proliferation, migration and invasion of A549 and H1975 cells in a dose-relevant manner, indicated by cell counting kit (CCK-8) assay, wound healing assay, transwell assay and EdU assay, we observed that jaceosidin inhibited the proliferation, migration and invasion of A549 and H1975 cells in a dose-relevant manner. Further research suggested that miR-34c-3p bound to the transcriptome of integrin α2ß1 and then inhibited its expression, leading to the inhibitory effect on the migration and invasion of NSCLC. Our study sheds some light on anti-tumor of jaceosidin and provides a potential lead compound for NSCLC therapy.

14.
Phytochemistry ; 211: 113686, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37105352

RESUMO

The entire plant Salvia cavaleriei H.Lév. (Lamiaceae) is used as a traditional Chinese herbal medicine. Its leaves are edible, and the flowers can be soaked in water to make a health-care tea. In an effort to find natural bioactive chemical components, twelve undescribed germacrane-type sesquiterpenoids, salcavalins A-L, were isolated from the whole plant of S. cavaleriei and were identified as analogs. This is the first study to isolate highly oxygenated germacrane-type sesquiterpenoids from this plant. The structures of these undescribed compounds were elucidated by various spectroscopic methods, and their absolute configurations were confirmed by single-crystal X-ray diffraction analysis with Cu Kα radiation and electronic circular dichroism calculations. The biological activity of these undescribed compounds on the production of tumor necrosis factor-alpha in lipopolysaccharide induced NR8383 cells was evaluated, and salcavalins I and K showed anti-inflammatory activity to some extent. Salcavalins A-C, F and L were found to be neuroprotective with antiparkinsonic potential in a nematode (Caenorhabditis elegans) model. In addition, salcavalins F and I displayed marked phytotoxic activity against radish seeds at a low concentration of 50 ppm. Our findings provide scientific justification to show that bioactive sesquiterpenoids from the edible herb have anti-inflammatory in vitro, neuroprotective and phytotoxic activities.


Assuntos
Medicamentos de Ervas Chinesas , Salvia , Sesquiterpenos , Estrutura Molecular , Sesquiterpenos de Germacrano/farmacologia , Sesquiterpenos de Germacrano/química , Salvia/química , Medicamentos de Ervas Chinesas/química , Anti-Inflamatórios , Sesquiterpenos/farmacologia , Sesquiterpenos/química
15.
World J Gastroenterol ; 29(10): 1602-1613, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36970586

RESUMO

BACKGROUND: The level of Ki-67 expression has served as a prognostic factor in gastric cancer. The quantitative parameters based on the novel dual-layer spectral detector computed tomography (DLSDCT) in discriminating the Ki-67 expression status are unclear. AIM: To investigate the diagnostic ability of DLSDCT-derived parameters for Ki-67 expression status in gastric carcinoma (GC). METHODS: Dual-phase enhanced abdominal DLSDCT was performed preoperatively in 108 patients with gastric adenocarcinoma. Primary tumor monoenergetic CT attenuation value at 40-100 kilo electron volt (kev), the slope of the spectral curve (λHU), iodine concentration (IC), normalized IC (nIC), effective atomic number (Zeff) and normalized Zeff (nZeff) in the arterial phase (AP) and venous phase (VP) were retrospectively compared between patients with low and high Ki-67 expression in gastric adenocarcinoma. Spearman's correlation coefficient was used to analyze the association between the above parameters and Ki-67 expression status. Receiver operating characteristic (ROC) curve analysis was performed to compare the diagnostic efficacy of the statistically significant parameters between two groups. RESULTS: Thirty-seven and 71 patients were classified as having low and high Ki-67 expression, respectively. CT40 kev-VP, CT70 kev-VP, CT100 kev-VP, and Zeff-related parameters were significantly higher, but IC-related parameters were lower in the group with low Ki-67 expression status than the group with high Ki-67 expression status, and other analyzed parameters showed no statistical difference between the two groups. Spearman's correlation analysis showed that CT40 kev-VP, CT70 kev-VP, CT100 kev-VP, Zeff, and nZeff exhibited a negative correlation with Ki-67 status, whereas IC and nIC had positive correlation with Ki-67 status. The ROC analysis demonstrated that the multi-variable model of spectral parameters performed well in identifying the Ki-67 status [area under the curve (AUC) = 0.967; sensitivity 95.77%; specificity 91.89%)]. Nevertheless, the differentiating capabilities of single-variable model were moderate (AUC value 0.630 - 0.835). In addition, the nZeff VP and nICVP (AUC 0.835 and 0.805) showed better performance than CT40 kev-VP, CT70 kev-VP and CT100 kev-VP (AUC 0.630, 0.631 and 0.662) in discriminating the Ki-67 status. CONCLUSION: Quantitative spectral parameters are feasible to distinguish low and high Ki-67 expression in gastric adenocarcinoma. Zeff and IC may be useful parameters for evaluating the Ki-67 expression.


Assuntos
Adenocarcinoma , Iodo , Neoplasias Gástricas , Humanos , Antígeno Ki-67 , Sensibilidade e Especificidade , Neoplasias Gástricas/diagnóstico por imagem , Estudos Retrospectivos , Diagnóstico Diferencial , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/patologia , Curva ROC , Tomografia Computadorizada por Raios X/métodos
17.
Biomater Adv ; 147: 213323, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36764198

RESUMO

The cancer chemodynamic therapy based on the Fenton reaction has been attracting more and more attention. However, the performance of the Fenton reaction is restricted by the unsuitable physiological pH value and inadequate H2O2 content in the tumor microenvironment (TME). In this study, we proposed a novel method of inducing lipid peroxide (LPO) of the cancer cell membrane, whose performance is not limited by the pH value and H2O2 in the TME. The activatable LPO-inducing liposomes were constructed by encapsulating Fe3+-containing compound ferric ammonium citrate (FC) in the unsaturated soybean phospholipids (SPC). It was found that the FC could be reduced by the overexpressed glutathione (GSH) in the TME and produce iron redox couple. The Fe3+/Fe2+ mediated the peroxidation of the unsaturated SPC and induced the LPO in the cancer cells. Finally, LPO accumulation led to cancer cell death and tumor growth inhibition. Furthermore, the activatable liposomes did not damage healthy tissues because of the low GSH content in normal tissues and the GSH-triggered activation of the nanocarrier. Together, our findings revealed that FC-SPC-lipo displayed excellent anti-tumor performance and its therapeutic effects are less influenced by the TME, compared with the traditional ferroptosis.


Assuntos
Peróxidos Lipídicos , Neoplasias , Humanos , Peróxidos Lipídicos/farmacologia , Peróxidos Lipídicos/uso terapêutico , Lipossomos/uso terapêutico , Peróxido de Hidrogênio/metabolismo , Neoplasias/tratamento farmacológico , Membrana Celular/metabolismo , Microambiente Tumoral
18.
J Adv Res ; 53: 33-47, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36529351

RESUMO

INTRODUCTIONS: Ethylene regulates ripening by activating various metabolic pathways that controlcolor, aroma, flavor, texture, and consequently, the quality of fruits. However, the modulation of ethylene biosynthesis and quality formation during banana fruit ripening remains unclear. OBJECTIVES: The present study aimed to identify the regulatory module that regulates ethylene and fruit quality-related metabolisms during banana fruit ripening. METHODS: We used RNA-seq to compare unripe and ripe banana fruits and identified a ripening-induced NAC transcription factor, MaNAC029. We further performed DNA affinity purification sequencing to identify the MaNAC029's target genes involved in ethylene biosynthesis and fruit quality formation, and electrophoretic mobility shift assay, chromatin immunoprecipitation with real-time polymerase chain reaction and dual luciferase assays to explore the underlying regulatory mechanisms. Immunoprecipitation combined with mass spectrometry, yeast two-hybrid assay, and bimolecular fluorescence complementation assay were used to screen and verify the proteins interacting with MaNAC029. Finally, the function of MaNAC029 and its interacting protein associated with ethylene biosynthesis and quality formation was verified through transient overexpression experiments in banana fruits. RESULTS: The study identified a nucleus-localized, ripening-induced NAC transcription factor MaNAC029. It transcriptionally activated genes associated with ethylene biosynthesis and a variety of cellular metabolisms related to fruit quality formation (cell wall degradation, starch degradation, aroma compound synthesis, and chlorophyll catabolism) by directly modulating their promoter activity during ripening. Overexpression of MaNAC029 in banana fruits activated ethylene biosynthesis and accelerated fruit ripening and quality formation. Notably, the E3 ligase MaXB3 interacted with and ubiquitinated MaNAC029 protein, facilitating MaNAC029 proteasomal degradation. Consistent with this finding, MaXB3 overexpression attenuated MaNAC029-enhanced ethylene biosynthesis and quality formation. CONCLUSION: Our findings demonstrate that a MaXB3-MaNAC029 module regulates ethylene biosynthesis and a series of cellular metabolisms related to fruit quality formation during banana ripening. These results expand the understanding of the transcriptional and post-translational mechanisms of fruit ripening and quality formation.


Assuntos
Musa , Musa/genética , Musa/metabolismo , Frutas/genética , Frutas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Etilenos/metabolismo , Etilenos/farmacologia
19.
BMC Urol ; 22(1): 211, 2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566200

RESUMO

BACKGROUND: To assess the characteristics, predictive risk factors, and prognostic effect of secondary bladder cancer (SBCa) following radical nephroureterectomy (RNU) in upper tract urothelial carcinoma (UTUC). METHODS: Using the Surveillance, Epidemiology, and End Results database, the authors analyzed clinicopathologic characteristics and survival data from 472 UTUC patients with SBCa after RNU, between 2004 and 2017. Cox's proportional hazard regression model was implemented to identify independent predictors associated with post-recurrence outcomes. The threshold for statistical significance was p < 0.05. RESULTS: In total, 200 Ta-3N0M0 localized UTUC patients with complete data were finally included. With a median follow-up of 71.0 months (interquartile ranges [IQR] 36.0 -103.8 months), 52.5% (n = 105) had died, with 30.5% (n = 61) dying of UTUC. The median time interval from UTUC to SBCa was 13.5 months (IQR 6.0-40.8 months). According to multivariable Cox regression analysis, patients with SBCa located at multiple sites, advanced SBCa stage, higher SBCa grade, elderly age and a shorter recurrence time, encountered worse cancer-specific survival (CSS), all p < 0.05. CONCLUSION: For primary UTUC patients with SBCa after radical surgery, advanced age, multiple SBCa sites, shorter recurrence time, higher SBCa stage, and grade proved to be significant independent prognostic factors of CSS. We ought to pay more attention to SBCa prevention as well as to earlier signs which may increase the likelihood of early detection. Having the ability to manage what may be seen as the superficial SBCa signs may enable us to improve survival but further research is required.


Assuntos
Carcinoma de Células de Transição , Neoplasias Ureterais , Neoplasias da Bexiga Urinária , Humanos , Idoso , Nefroureterectomia/métodos , Carcinoma de Células de Transição/patologia , Neoplasias da Bexiga Urinária/cirurgia , Estudos Retrospectivos , Prognóstico , Fatores de Risco , Recidiva Local de Neoplasia/cirurgia , Neoplasias Ureterais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA