Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 138: 112569, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959540

RESUMO

BACKGROUND: Bladder cancer (BLCA) is one of the top ten most common cancers in the world. Aberrant sialylation is a common feature in tumorigenesis and tumor immunity. This study seeks to explore the potential impact of sialyltransferase ST3Gal5 on BLCA. METHODS: Initially, glycosyltransferase-related DEGs (GRDEGs) were identified using multiple bioinformatics approaches in TCGA-BLCA cohort and validated using GEO databases. Clinical prognosis integration facilitated the determination of ST3Gal5 as an independent prognostic factor in BLCA, employing univariate and multivariate Cox regression analyses. Immune cell infiltration was assessed via CIBERSORT and ssGSEA analyses, while HLA and immune checkpoint genes' levels, along with drug sensitivity, were evaluated in low- and high-ST3Gal5 groups. The TIDE and IPS scores were used to gauge the immune checkpoint blockade (ICB) response. Furthermore, functional experiments, both in vivo and in vitro, were conducted to elucidate the biological roles of ST3Gal5. RESULTS: In agreement with bioinformatics findings, ST3Gal5 expression was down-regulated in BLCA tissues and cells, correlating with poorer prognostic outcomes. The StromalScore, ImmuneScore, and ESTIMATEScore were significantly elevated in low-ST3Gal5 group. Moreover, the levels of HLA and immune checkpoint genes were upregulated in low-ST3Gal5 group. Down-regulated ST3Gal5 promoted the proliferation, migration, and invasion of BLCA cells in vivo and in vitro. CONCLUSION: Our findings demonstrated that low ST3Gal5 level promoted tumorigenesis and progression of BLCA, implying its potential as a predictive biomarker and therapeutic target.

2.
Front Immunol ; 15: 1348189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590525

RESUMO

Older patients with cancer, particularly those over 75 years of age, often experience poorer clinical outcomes compared to younger patients. This can be attributed to age-related comorbidities, weakened immune function, and reduced tolerance to treatment-related adverse effects. In the immune checkpoint inhibitors (ICI) era, age has emerged as an influential factor impacting the discovery of predictive biomarkers for ICI treatment. These age-linked changes in the immune system can influence the composition and functionality of tumor-infiltrating immune cells (TIICs) that play a crucial role in the cancer response. Older patients may have lower levels of TIICs infiltration due to age-related immune senescence particularly T cell function, which can limit the effectivity of cancer immunotherapies. Furthermore, age-related immune dysregulation increases the exhaustion of immune cells, characterized by the dysregulation of ICI-related biomarkers and a dampened response to ICI. Our review aims to provide a comprehensive understanding of the mechanisms that contribute to the impact of age on ICI-related biomarkers and ICI response. Understanding these mechanisms will facilitate the development of treatment approaches tailored to elderly individuals with cancer.


Assuntos
Pesquisa Biomédica , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias , Idoso , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Envelhecimento , Neoplasias/tratamento farmacológico
3.
Cancer Cell Int ; 23(1): 319, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087309

RESUMO

BACKGROUND: CD56 has been observed in malignant tumours exhibiting neuronal or neuroendocrine differentiation, such as breast cancer, small-cell lung cancer, and neuroblastoma. Abnormal glycosylation modifications are thought to play a role in regulating tumour cell proliferation, migration, and invasion. Nevertheless, the exact roles and molecular mechanisms of CD56 and polysialylated CD56 (PSA-CD56) in the development and progression of clear cell renal cell carcinoma (ccRCC) remain elusive. Here we unveil the biological significance of CD56 and PSA-CD56 in ccRCC. METHODS: In this study, we employed various techniques, including immunohistochemistry (IHC), RT-qPCR, and western blot, to examine the mRNA and protein expression levels in both human ccRCC tissue and cell lines. Lentivirus infection and CRISPR/Cas9 system were utilized to generate overexpression and knockout cell lines of CD56. Additionally, we conducted several functional assays, such as CCK-8, colony formation, cell scratch, and transwell assays to evaluate cell growth, proliferation, migration, and invasion. Furthermore, we established a xenograft tumor model to investigate the role of CD56 in ccRCC in vivo. To gain further insights into the molecular mechanisms associated with CD56, we employed the Hedgehog inhibitor JK184 and the ß-catenin inhibitor Prodigiosin. RESULTS: CD56 was significantly overexpressed in both human ccRCC tissues and renal cancer cell lines compared to adjacent normal tissues and normal renal epithelial cells. In vitro and in vivo experiments revealed that the knockout of CD56 inhibited the proliferation, migration, and invasion capabilities of ccRCC cells, whereas the overexpression of PSA-CD56 promoted these capacities. Finally, PSA-CD56 overexpression was found to activate both the Hedgehog and Wnt/ß-catenin signaling pathways. CONCLUSION: Our findings demonstrate that the oncogenic function of CD56 polysialylation plays a vital role in the tumorigenesis and progression of ccRCC, implying that targeting PSA-CD56 might be a feasible treatment target for ccRCC.

4.
Genet Res (Camb) ; 2022: 8213723, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36245556

RESUMO

Background: The most common site of prostate cancer metastasis is bone tissue with many recent studies having conducted genomic and clinical research regarding bone metastatic prostate cancer. However, further work is needed to better define those patients that are at an elevated risk of such metastasis. Methods: SEER and TCGA databases were searched to develop a nomogram for predicting prostate cancer bone metastasis. Results: Herein, we leveraged the Surveillance, Epidemiology, and End Results (SEER) database to construct a predictive nomogram capable of readily and accurately predicted the odds of bone metastasis in prostate cancer patients. This nomogram was utilized to assign patients with prostate cancer included in The Cancer Genome Atlas (TCGA) to cohorts at a high or low risk of bone metastasis (HRBM and LRBM, respectively). Comparisons of these LRBM and HRBM cohorts revealed marked differences in mutational landscapes between these patient cohorts, with increased frequencies of gene fusions, somatic copy number variations (CNVs), and single nucleotide variations (SNVs), particularly in the P53 gene, being evident in the HRBM cohort. We additionally identified lncRNAs, miRNAs, and mRNAs that were differentially expressed between these two patient cohorts and used them to construct a competing endogenous RNA (ceRNA) network. Moreover, three weighted gene co-expression network analysis (WGCNA) modules were constructed from the results of these analyses, with KIF14, MYH7, and COL10A1 being identified as hub genes within these modules. We further found immune response activity levels in the HRBM cohort to be elevated relative to that in the LRBM cohort, with single sample gene enrichment analysis (ssGSEA) scores for the immune checkpoint signature being increased in HRBM patient samples relative to those from LRBM patients. Conclusion: We successfully developed a nomogram capable of readily detecting patients with prostate cancer at an elevated risk of bone metastasis.


Assuntos
Neoplasias Ósseas , MicroRNAs , Neoplasias da Próstata , RNA Longo não Codificante , Neoplasias Ósseas/genética , Variações do Número de Cópias de DNA/genética , Redes Reguladoras de Genes , Humanos , Incidência , Masculino , MicroRNAs/genética , Nomogramas , Nucleotídeos , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Longo não Codificante/genética
5.
Cells ; 11(16)2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-36010674

RESUMO

Renal cell carcinoma (RCC) is one of the most prevalent malignant tumors of the urinary system, accounting for around 2% of all cancer diagnoses and deaths worldwide. Clear cell RCC (ccRCC) is the most prevalent and aggressive histology with an unfavorable prognosis and inadequate treatment. Patients' progression-free survival is considerably improved by surgery; however, 30% of patients develop metastases following surgery. Identifying novel targets and molecular markers for RCC prognostic detection is crucial for more accurate clinical diagnosis and therapy. Glycosylation is a critical post-translational modification (PMT) for cancer cell growth, migration, and invasion, involving the transfer of glycosyl moieties to specific amino acid residues in proteins to form glycosidic bonds through the activity of glycosyltransferases. Most cancers, including RCC, undergo glycosylation changes such as branching, sialylation, and fucosylation. In this review, we discuss the latest findings on the significance of aberrant glycans in the initiation, development, and progression of RCC. The potential biomarkers of altered glycans for the diagnosis and their implications in RCC have been further highlighted.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/metabolismo , Glicosilação , Glicosiltransferases/metabolismo , Humanos , Neoplasias Renais/patologia , Polissacarídeos
6.
Expert Rev Anticancer Ther ; 22(1): 53-64, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34726963

RESUMO

INTRODUCTION: Mechanical force is attributed to the formation of tumor blood vessels, influences cancer cell invasion and metastasis, and promotes reprogramming of the energy metabolism. Currently, therapy strategies for the tumor microenvironment are being developed progressively. The purpose of this article is to discuss the molecular mechanism, diagnosis, and treatment of mechanical force in urinary tract cancers and outline the medications used in the mechanical microenvironment. AREAS COVERED: This review covers the complex mechanical elements in the microenvironment of urinary system malignancies, focusing on mechanical molecular mechanisms for diagnosis and treatment. EXPERT OPINION: The classification of various mechanical forces, such as matrix stiffness, shear force, and other forces, is relatively straightforward. However, little is known about the molecular process of mechanical forces in urinary tract malignancies. Because mechanical therapy is still controversial, it is critical to understand the molecular basis of mechanical force before adding mechanical therapy solutions.


Assuntos
Neoplasias , Neoplasias Urogenitais , Feminino , Humanos , Masculino , Neoplasias/patologia , Microambiente Tumoral
7.
J Oncol ; 2021: 5510318, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33976697

RESUMO

Autophagy is a treatment target for many disorders, including cancer, and its specific role is becoming increasingly well known. In tumors, researchers pay attention to microribonucleic acids (miRNAs) with regulatory effects to develop more effective therapeutic drugs for autophagy and find new therapeutic targets. Various studies have shown that autophagy-related miRNAs play an irreplaceable role in different tumors, such as miR-495, miR-30, and miR-101. These miRNAs are associated with autophagy resistance in gastric cancer, non-small cell lung cancer, and cervical cancer. In recent years, autophagy-related miRNAs have also been reported to play a role in autophagy in urinary system tumors. This article reviews the regulatory effects of autophagy-related miRNAs in kidney, bladder, and prostate cancer and provides new ideas for targeted therapy of the three major tumors of the urinary system.

8.
Front Immunol ; 12: 639636, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33767709

RESUMO

Renal cell carcinoma is a highly heterogeneous cancer group, and the complex microenvironment of the tumor provides appropriate immune evasion opportunities. The molecular mechanism of immune escape in renal cell carcinoma is currently a hot issue, focusing primarily on the major complex of histocompatibility, immunosuppressive cells, their secreted immunosuppressive cytokines, and apoptosis molecule signal transduction. Immunotherapy is the best treatment option for patients with metastatic or advanced renal cell carcinoma and combination immunotherapy based on a variety of principles has shown promising prospects. Comprehensive and in-depth knowledge of the molecular mechanism of immune escape in renal cell carcinoma is of vital importance for the clinical implementation of effective therapies. The goal of this review is to address research into the mechanisms of immune escape in renal cell carcinoma and the use of the latest immunotherapy. In addition, we are all looking forward to the latest frontiers of experimental combination immunotherapy.


Assuntos
Carcinoma de Células Renais/imunologia , Imunoterapia/métodos , Neoplasias Renais/imunologia , Evasão Tumoral/imunologia , Animais , Carcinoma de Células Renais/terapia , Humanos , Neoplasias Renais/terapia
9.
Front Oncol ; 10: 957, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32596162

RESUMO

Bladder cancer is one of the most common malignant tumors of the urogenital system with high morbidity and mortality worldwide. Early diagnosis and personalized treatment are the keys to successful bladder cancer treatment. Due to high postoperative recurrence rates and poor prognosis, it is urgent to find suitable therapeutic targets and biomarkers. Glycans are one of the four biological macromolecules in the cells of an organism, along with proteins, nucleic acids, and lipids. Glycans play important roles in nascent peptide chain folding, protein processing, and translation, cell-to-cell adhesion, receptor-ligand recognition, and binding and cell signaling. Glycans are mainly divided into N-glycans, O-glycans, proteoglycans, and glycosphingolipids. The focus of this review is the discussion of glycans related to bladder cancer. Additionally, this review also addresses the clinical value of glycans in the diagnosis and treatment of bladder cancer. Abnormal glycans are likely to be potential biomarkers for bladder cancer.

10.
Front Oncol ; 10: 540332, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33598419

RESUMO

ST3Gal IV is one of the principal sialyltransferases responsible for the biosynthesis of α2, 3-sialic acid to the termini N-glycans or O-glycans of glycoproteins and glycolipids. It has been reported that ST3Gal IV expression is associated with gastric carcinoma, pancreatic adenocarcinoma and breast cancer. While the expression and functions of ST3Gal IV in cervical cancer are still poorly understood. In this study, we found that ST3Gal IV was downregulated in human cervical cancer tissues compared to normal cervix tissues, and ST3Gal IV expression was negatively associated with the pathological grade of cervical cancer. ST3Gal IV upregulation inhibited the growth and proliferation of cervical cancer HeLa and SiHa cells in vitro and in vivo. Furthermore, ST3Gal IV overexpression enhanced the expression of several Notch pathway components such as Jagged1, Notch1, Hes1 and Hey1, while cell cycle protein expression like Cyclin D1, Cyclin E1, CDK2 and CDK4 were decreased. These results indicate that expression of ST3Gal IV is reduced in cervical cancer and plays a negative role in cell proliferation via Notch/p21/CDKs signaling pathway. Thus, sialyltransferase ST3Gal IV might be a target for the diagnosis and therapy of cervical cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA