Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(8): eadd6550, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36812318

RESUMO

The giant single-celled eukaryote, Spirostomum, exhibits one of the fastest movements in the biological world. This ultrafast contraction is dependent on Ca2+ rather than ATP and therefore differs to the actin-myosin system in muscle. We obtained the high-quality genome of Spirostomum minus from which we identified the key molecular components of its contractile apparatus, including two major Ca2+ binding proteins (Spasmin 1 and 2) and two giant proteins (GSBP1 and GSBP2), which act as the backbone and allow for the binding of hundreds of spasmins. The evidence suggests that the GSBP-spasmin protein complex is the functional unit of the mesh-like contractile fibrillar system, which, coupled with various other subcellular structures, provides the mechanism for repetitive ultrafast cell contraction and extension. These findings improve our understanding of the Ca2+-dependent ultrafast movement and provide a blueprint for future biomimicry, design, and construction of this kind of micromachine.


Assuntos
Actinas , Cilióforos , Miosinas , Contração Muscular/fisiologia
2.
J Eukaryot Microbiol ; 66(2): 212-220, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29893449

RESUMO

Resting cyst formation is a remarkable survival strategy used by ciliates in response to the adverse environmental conditions. However, the mechanisms underlying encystment are poorly understood. Here, the genetic basis of encystment in Colpoda aspera was examined through RNA sequencing to identify transcriptome-wide changes in gene expression between vegetative and encystment stages. After de novo assembly, 49,543 transcripts were identified. Gene annotation and pathway mapping analysis revealed marked changes in biosynthesis, energy metabolism, and autophagy pathways during cyst formation. In addition, some differentially regulated genes were predicted to function in the interconnected cAMP, AMPK, mTOR, and PI3K/AKT signaling pathways, potentially forming a regulatory network for encystment. The present study conducted a large-scale assessment of Colpoda aspera genomic resources and provides new insight into the molecular mechanisms underlying cyst formation.


Assuntos
Cilióforos/fisiologia , Genes de Protozoários , Transcriptoma , Cilióforos/genética , Perfilação da Expressão Gênica , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA