Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(8): 103769, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38917605

RESUMO

Magang geese are typical short-day breeders whose reproductive behaviors are significantly influenced by photoperiod. Exposure to a long-day photoperiod results in testicular regression and spermatogenesis arrest in Magang geese. To investigate the epigenetic influence of DNA methylation on the seasonal testicular regression in Magang geese, we conducted whole-genome bisulfite sequencing and transcriptome sequencing of testes across 3 reproductive phases during a long-day photoperiod. A total of 250,326 differentially methylated regions (DMR) were identified among the 3 comparison groups, with a significant number showing hypermethylation, especially in intronic regions of the genome. Integrating bisulfite sequencing with transcriptome sequencing data revealed that DMR-associated genes tend to be differentially expressed in the testes, highlighting a potential regulatory role for DNA methylation in gene expression. Furthermore, there was a significant negative correlation between changes in the methylation of CG DMRs and changes in the expression of their associated genes in the testes. A total of 3,359 DMR-associated differentially expressed genes (DEG) were identified; functional enrichment analyses revealed that motor proteins, MAPK signaling pathway, ECM-receptor interaction, phagosome, TGF-beta signaling pathway, and calcium signaling might contribute to the testicular regression process. GSEA revealed that the significantly enriched activated hallmark gene set was associated with apoptosis and estrogen response during testicular regression, while the repressed hallmark gene set was involved in spermatogenesis. Our study also revealed that methylation changes significantly impacted the expression level of vitamin A metabolism-related genes during testicular degeneration, with hypermethylation of STRA6 and increased calmodulin levels indicating vitamin A efflux during the testicular regression. These findings were corroborated by pyrosequencing and real-time qPCR, which revealed that the vitamin A metabolic pathway plays a pivotal role in testicular degeneration under long-day conditions. Additionally, metabolomics analysis revealed an insufficiency of vitamin A and an abnormally high level of oxysterols accumulated in the testes during testicular regression. In conclusion, our study demonstrated that testicular degeneration in Magang geese induced by a long-day photoperiod is linked to vitamin A homeostasis disruption, which manifests as the hypermethylation status of STRA6, vitamin A efflux, and a high level of oxysterol accumulation. These findings offer new insights into the effects of DNA methylation on the seasonal testicular regression that occurs during long-day photoperiods in Magang geese.

2.
Anim Biotechnol ; 34(9): 4809-4818, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37022011

RESUMO

Photoperiod is a key environmental factor in regulating bird reproduction and induces neuroendocrine changes through the hypothalamic-pituitary-gonadal (HPG) axis. OPN5, as a deep-brain photoreceptor, transmits light signals to regulate follicular development through TSH-DIO2/DIO3. However, the mechanism among OPN5, TSH-DIO2/DIO3, and VIP/PRL in the HPG axis underlying the photoperiodic regulation of bird reproduction is unclear. In this study, 72 laying quails with 8-week-old were randomly divided into the long-day (LD) group [16 light (L): 8 dark (D)] and the short-day (SD) group (8 L:16 D), and then samples were collected on d 1, d 11, d 22, and d 36 of the experiment. The results showed that compared with the LD group, the SD group significantly inhibited follicular development (P < 0.05), decreased the P4, E2, LH, and PRL in serum (P < 0.05), downregulated the expression of GnRHR, VIP, PRL, OPN5, DIO2, and LHß (P < 0.05), reduced the expression of GnRH and TSHß (P > 0.05), and promoted DIO3, GnIH gene expression (P < 0.01). The short photoperiod downregulates OPN5, TSHß, and DIO2 and upregulates DIO3 expression to regulate the GnRH/GnIH system. The downregulation of GnRHR and upregulation of GnIH resulted in a decrease in LH secretion, which withdrew the gonadotropic effects on ovarian follicles development. Slow down of follicular development and egg laying may also arise from lack of PRL potentiation to small follicle development under short days.


Assuntos
Fotoperíodo , Codorniz , Feminino , Animais , Codorniz/metabolismo , Reprodução/genética , Hormônio Liberador de Gonadotropina , Tireotropina
3.
Aging Cell ; 22(2): e13765, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36633253

RESUMO

Genome-wide association studies (GWAS) have validated a strong association of atherosclerosis with the CDKN2A/B locus, a locus harboring three tumor suppressor genes: p14ARF , p15INK4b , and p16INK4a . Post-GWAS functional analysis reveals that CUX is a transcriptional activator of p16INK4a via its specific binding to a functional SNP (fSNP) rs1537371 on the atherosclerosis-associated CDKN2A/B locus, regulating endothelial senescence. In this work, we characterize SATB2, another transcription factor that specifically binds to rs1537371. We demonstrate that even though both CUX1 and SATB2 are the homeodomain transcription factors, unlike CUX1, SATB2 is a transcriptional suppressor of p16INK4a and overexpression of SATB2 competes with CUX1 for its binding to rs1537371, which inhibits p16INK4a and p16INK4a -dependent cellular senescence in human endothelial cells (ECs). Surprisingly, we discovered that SATB2 expression is transcriptionally repressed by CUX1. Therefore, upregulation of CUX1 inhibits SATB2 expression, which enhances the binding of CUX1 to rs1537371 and subsequently fine-tunes p16INK4a expression. Remarkably, we also demonstrate that IL-1ß, a senescence-associated secretory phenotype (SASP) gene itself and a biomarker for atherosclerosis, induces cellular senescence also by upregulating CUX1 and/or downregulating SATB2 in human ECs. A model is proposed to reconcile our findings showing how both primary and secondary senescence are activated via the atherosclerosis-associated p16INK4a expression.


Assuntos
Aterosclerose , Proteínas de Ligação à Região de Interação com a Matriz , Humanos , Aterosclerose/genética , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Células Endoteliais/metabolismo , Estudo de Associação Genômica Ampla , Proteínas de Homeodomínio/genética , Proteínas de Ligação à Região de Interação com a Matriz/genética , Fenótipo , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Interferon beta-1b/farmacologia
4.
Poult Sci ; 101(10): 102024, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35986948

RESUMO

This study sought to understand the regulation mechanism of OPN5 through the TSH-DIO2/DIO3 pathway mediated photoperiod on the breeding activity of short-day breeding birds. In this study, the reproductive activity of Magang goose was regulated by artificial light, and the reproductive activity of the ganders were determined according to the daily laying rate of female geese. The testicular development and the serum reproductive hormone concentrations of ganders were measured during the reproductive period (d 0), the reproductive degeneration period (d 13 and 27) and the resting period (d 45). The mRNA and protein expression patterns of OPN5, the HPG axis reproductive genes, and TSH-DIO2/DIO3 pathway related genes were examined. Results showed that the laying rate of geese and the gonadal indices (GSI) decreased gradually after the photoperiod increased. Histological observation found that the spermatogenic function of the testis was normal on d 0 and 13, while degeneration occurred by d 27 and 45. Serum testosterone, FSH, and LH concentration showed a slight increase on d 13, followed by a sharp decrease on d 27 and 45 (P < 0.01), while PRL concentrations were low on d 0 and 13, and increased rapidly on d 27 and 45 (P < 0.01).The expression pattern of GnRH, FSH, LH, and THRß mRNA were similar, with high levels on d 0 and 13 and a decreasing trend on d 27 and 45 (P < 0.05 or P < 0.01); and GnRHR mRNA levels were higher on d 13 (P < 0.05), but then had decreased by d 27 and 45 (P < 0.01). The expression pattern of GnIH and GnIHR was similar, which was opposite to that of GnRHR. VIP, PRL, and PRLR increased gradually and peaked on d 45 (P < 0.01). The expression trend of TRH, TSHß, and DIO2 was similar to that of GnRHR, and the expression abundance increased on d 13, and then decreased on d 27 and 45. GnRH protein expression was significantly higher than during the other 3 periods (P < 0.01) while the GnIH protein levels were extremely low on d 0, had gradually increased by d 13, and significantly increased by d 27 and 45 (P < 0.01). The protein expression trends of THR and DIO2 were similar to that of GNIH. DIO3 protein expression was low on d 0 and 13, and increased by d 27 and 45. These results suggest that when the photoperiod increased, the hypothalamus OPN5 gene and protein were upregulated and the pituitary TSHß, TSHR, and hypothalamus THRß, TRH, and DIO2 were downregulated, and thus the reproductive activity of geese was inhibited.


Assuntos
Gansos , Fotoperíodo , Animais , Galinhas/metabolismo , Feminino , Hormônio Foliculoestimulante , Gansos/fisiologia , Hormônio Liberador de Gonadotropina , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodução/fisiologia , Testosterona , Tireotropina
5.
Poult Sci ; 101(5): 101809, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35358924

RESUMO

Stocking density critically affects the growth and subsequent performance of animals in modern poultry production. This study investigated the effects of stocking density on ovarian development, ovarian maturation, and the mRNA expression of key genes in the reproductive axis during the rearing period of Shan-ma ducks. The experiments involved 180 healthy 7-wk-old Shan-ma ducks and randomly divided into low stocking density (LSD; n = 30, density = 5 birds/m2), medium stocking density (MSD; n = 60, density = 10 birds/m2) and high stocking density groups (HSD; n = 90, density = 15 birds/m2), for rearing. After examining ovarian development and measuring hormone levels in the plasma and expression levels of key regulatory genes in the reproductive axis at 19 wk of rearing, analysis of the gonad index analysis, reflecting stocking density, uncovered statistically significant differences. The gonad index of the LSD group was significantly higher than those of the MSD and HSD groups (P < 0.01), while no significant difference was observed between the MSD and HSD groups. pre-ovulatory follicles (POFs) and small yellow follicles (SYFs) development was only apparent in the LSD group, with the large white follicles (LWFs) number of this group being significantly higher than that of the MSD group (P < 0.05). The blood levels of E2 (estradiol), P4 (progesterone), and T (testosterone) were significantly higher in the LSD group than in the MSD and HSD groups (P < 0.05 or 0.01). Also, the levels of both P4 and T were significantly higher in the MSD group than in the HSD group (P < 0.01). The gene expression levels of GnRHR, FSH, AMHR, and FSHR were significantly increased in the LSD group compared to the MSD and HSD groups (P < 0.05 or 0.01), while the expression levels of GnIHR and GDF9 were significantly decreased in the LSD and MSD groups compared to the HSD group (P < 0.05 or 0.01). Steroid biosynthesis pathway genes such as StAR, CYP11A1, 3ß-HSD, CYP19A1, and BMP15 were significantly downregulated at greater stocking densities (P < 0.05 or 0.01). Likewise, the protein expression of StAR, 3ß-HSD, and CYP19A1 was also significantly decreased (P < 0.05 or 0.01). These results demonstrate that both medium and high stocking densities suppressed the expression of the key reproduction-promoting factors, while the expression level of the key reproductive inhibitory factors was enhanced. Therefore, rates of ovarian development and maturation could be reduced by a high stocking density leading to a delay in reproduction performance during the rearing period of Shan-ma ducks.


Assuntos
Galinhas , Patos , Animais , Patos/genética , Estradiol , Progesterona
6.
Nat Aging ; 2(2): 140-154, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-37117763

RESUMO

Accumulation of senescent cells with age is an important driver of aging and age-related diseases. However, the mechanisms and signaling pathways that regulate senescence remain elusive. In this report, we performed post-genome-wide association studies (GWAS) functional studies on the CDKN2A/B locus, a locus known to be associated with multiple age-related diseases and overall human lifespan. We demonstrate that transcription factor CUX1 (Cut-Like Homeobox 1) specifically binds to an atherosclerosis-associated functional single-nucleotide polymorphism (fSNP) (rs1537371) within the locus and regulates the CDKN2A/B-encoded proteins p14ARF, p15INK4b and p16INK4a and the antisense noncoding RNA in the CDK4 (INK4) locus (ANRIL) in endothelial cells (ECs). Endothelial CUX1 expression correlates with telomeric length and is induced by both DNA-damaging agents and oxidative stress. Moreover, induction of CUX1 expression triggers both replicative and stress-induced senescence via activation of p16INK4a expression. Thus, our studies identify CUX1 as a regulator of p16INK4a-dependent endothelial senescence and a potential therapeutic target for atherosclerosis and other age-related diseases.


Assuntos
Aterosclerose , Inibidor p16 de Quinase Dependente de Ciclina , Humanos , Aterosclerose/genética , Senescência Celular/genética , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Células Endoteliais/metabolismo , Estudo de Associação Genômica Ampla , Proteínas de Homeodomínio/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética
7.
Poult Sci ; 100(7): 101129, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34058564

RESUMO

Polysaccharide Of Atractylodes Macrocephala Koidz (PAMK) has been proved to have anti-cancer, antitumor, anti-inflammation function and improve the immune level of the organism. The miRNA plays a very important role in regulating the immune function by negatively regulate the expression of target genes. To explore the molecular mechanism of PAMK active the lymphocytes, thirty 61-d-old geese were randomly divided into 4 groups (C, CTX, PAMK, PAMK+CTX). The thymus morphology, the level of serum granulocyte-macrophage colony-stimulating factor (GMC-SF), IL-1ß, IL-3, IL-5, the relative mRNA expression of CD25, novel_mir2, CTLA4 and CD28 signal pathway were measured. Further more, the lymphocytes was extracted from thymus to measure the relative mRNA expression of CD28 signal pathway. The results showed that PAMK could significantly maintain normal cell morphology of thymus, alleviate the decrease level of GMC-SF, IL-1ß, IL-5, IL-6, TGF-ß, the increase level of IL-4, IL-10, and the decrease relative mRNA expression of novel_mir2, CD25 and CD28 signal pathway in thymus and lymphocytes induced by cyclophosphamide (CTX). In conclusion, PAMK alleviated the decreased T lymphocytes activation levels induced by CTX through novel_mir2/CTLA4/CD28/AP-1 signal pathway.


Assuntos
Atractylodes , Animais , Antígenos CD28 , Galinhas , Ciclofosfamida , Gansos , Terapia de Imunossupressão/veterinária , Polissacarídeos , Transdução de Sinais , Linfócitos T , Fator de Transcrição AP-1
8.
Genes (Basel) ; 11(12)2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371207

RESUMO

Previously, using FREP-MS, we identified a protein complex including eight proteins that specifically bind to the functional SNP (fSNP) rs6032664 at a CD40 locus associated with autoimmune diseases. Among these eight proteins, four are ribosomal proteins RPL26, RPL4, RPL8, and RPS9 that normally make up the ribosomal subunits involved in the cellular process of protein translation. So far, no publication has shown these ribosomal proteins function as transcriptional regulators. In this work, we demonstrate that four ribosomal proteins: RPL26, RPL4, RPL8, and RPS9 are bona fide CD40 transcriptional regulators via binding to rs6032664. In addition, we show that suppression of CD40 expression by RPL26 RNAi knockdown inactivates NF-κB p65 by dephosphorylation via NF-κB signaling pathway in fibroblast-like synoviocytes (FLS), which further reduces the transcription of disease-associated risk genes such as STAT4, CD86, TRAF1 and ICAM1 as the direct targets of NF-κB p65. Based on these findings, a disease-associated risk gene transcriptional regulation network (TRN) is generated, in which decreased expression of, at least, RPL26 results in the downregulation of risk genes: STAT4, CD86, TRAF1 and ICAM1, as well as the two proinflammatory cytokines: IL1ß and IL6 via CD40-induced NF-κB signaling. We believe that further characterization of this disease-associated TRN in the CD40-induced NF-κB signaling by identifying both the upstream and downstream regulators will potentially enable us to identify the best targets for drug development.


Assuntos
Antígenos CD40/genética , Regulação da Expressão Gênica/genética , Polimorfismo de Nucleotídeo Único , Proteínas Ribossômicas/genética , Sinoviócitos/metabolismo , Transcrição Gênica , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Linfócitos B/metabolismo , Antígenos CD40/biossíntese , Linhagem Celular , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Genes Reporter , Humanos , NF-kappa B/metabolismo , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Recombinantes/metabolismo , Proteína S9 Ribossômica
9.
Nat Commun ; 11(1): 3340, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620845

RESUMO

GWAS cannot identify functional SNPs (fSNP) from disease-associated SNPs in linkage disequilibrium (LD). Here, we report developing three sequential methodologies including Reel-seq (Regulatory element-sequencing) to identify fSNPs in a high-throughput fashion, SDCP-MS (SNP-specific DNA competition pulldown-mass spectrometry) to identify fSNP-bound proteins and AIDP-Wb (allele-imbalanced DNA pulldown-Western blot) to detect allele-specific protein:fSNP binding. We first apply Reel-seq to screen a library containing 4316 breast cancer-associated SNPs and identify 521 candidate fSNPs. As proof of principle, we verify candidate fSNPs on three well-characterized loci: FGFR2, MAP3K1 and BABAM1. Next, using SDCP-MS and AIDP-Wb, we rapidly identify multiple regulatory factors that specifically bind in an allele-imbalanced manner to the fSNPs on the FGFR2 locus. We finally demonstrate that the factors identified by SDCP-MS can regulate risk gene expression. These data suggest that the sequential application of Reel-seq, SDCP-MS, and AIDP-Wb can greatly help to translate large sets of GWAS data into biologically relevant information.


Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Proteínas Adaptadoras de Transdução de Sinal/genética , Western Blotting , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Desequilíbrio de Ligação , MAP Quinase Quinase Quinase 1/genética , Células MCF-7 , Espectrometria de Massas/métodos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Sequências Reguladoras de Ácido Nucleico/genética
10.
J Virol Methods ; 266: 34-40, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30677463

RESUMO

Goose parvovirus (GPV) is one of the most serious viral pathogens in goslings. Recently, a new pathogen to the Chinese mainland-duck-origin novel goose parvovirus (N-GPV)-was found to be 90.8-94.6% identical to the nucleotide sequence of GPV, and typically causes growth disorders and high infection rates in meat ducks. The spread of both of these viruses hinders the healthy development of the waterfowl breeding industry. In this study, recombinase polymerase amplification (RPA) was combined with a vertical flow (VF) visualization strip to develop a universal assay for the rapid detection of GPV and N-GPV. A set of specific primers and probes were designed to target the VP3 gene. Detection was possible at a constant temperature of 37 °C within 5-10 min. The assay successfully detected GPV and N-GPV with high-specificity and did not exhibit cross-reactivity with other waterfowl viruses and bacteria. The analytical sensitivity of the GPV-RPA-VF assay was 2 × 102 copies of GPV plasmid. Validation of the GPV-RPA-VF assay-using 60 samples from the field--confirmed 100% similarity between the results of GPV-RPA-VF and conventional qPCR. The results indicate that the GPV-RPA-VF assay was accurate, sensitive, and specific. This assay can be performed with minimal equipment and training to rapidly detect GPV and N-GPV during the early phase of an outbreak, especially when timely veterinary diagnoses are needed in the field and in rural areas.


Assuntos
Patos/virologia , Gansos/virologia , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Técnicas de Amplificação de Ácido Nucleico/métodos , Infecções por Parvoviridae/veterinária , Parvovirus/isolamento & purificação , Animais , DNA Polimerase Dirigida por DNA/genética , Infecções por Parvoviridae/diagnóstico , Filogenia , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/virologia , Recombinases/genética , Sensibilidade e Especificidade , Proteínas Estruturais Virais/genética
11.
J Interferon Cytokine Res ; 38(8): 333-340, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30052119

RESUMO

Double-stranded RNA-dependent protein kinase (PKR) is an important antiviral IFN-stimulated gene (ISGs) that recognizes double-stranded RNA (dsRNA) and mediates inhibition of translation initiation and protein synthesis in various types of viral infection. In this study, the complete coding sequence (CDS) of goose PKR (goPKR) is identified and characterized. The open reading frame (ORF) of goPKR is 1668 bp, which encodes a polypeptide of 555 amino acids. The sequence identity results demonstrate that the goose PKR is most closely related to duck PKR gene, with nucleotide identities of 91.6%, whereas nucleotide identity of the goose PKR to chicken, human, and mouse PKR is 76.4%, 51.9%, and 52.0%, respectively. Interestingly, the deduced amino acid sequence of goose PKR contains 3 main structure domains, including 2 double-strand RNA-binding motif (dsRBM) domains and one serine/threonine protein kinase domain. This is similar to the chicken and mammals, whereas it is different from duck PKR protein, which contains only one dsRBM1 domain and one serine/threonine protein kinase domain. Quantitative real-time PCR analysis indicates that goose PKR mRNA is widely expressed in all sampled tissues. It is highly expressed in the blood, spleen, lung, and bursa of Fabricius and jejunum and is slightly expressed in heart, muscle, trachea, and brain. The results of confocal microscopy suggest that PKR-EGFP is mainly localized in the cytoplasm, and overexpression of goPKR protein significantly reduces Newcastle disease virus (NDV) replication (viral copies and viral titer) in goose embryo fibroblasts. These findings show that goose PKR is an important antiviral ISG, involved in the antiviral innate immune defense to NDV in geese.


Assuntos
Antivirais/farmacologia , Gansos/genética , Perfilação da Expressão Gênica , Vírus da Doença de Newcastle/efeitos dos fármacos , Peptídeos/farmacologia , eIF-2 Quinase/genética , eIF-2 Quinase/farmacologia , Animais , Antivirais/química , Antivirais/metabolismo , Vírus da Doença de Newcastle/metabolismo , Peptídeos/química , Peptídeos/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Replicação Viral/efeitos dos fármacos , eIF-2 Quinase/química , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA