Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Med ; 53(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38063231

RESUMO

Metastasis is the leading cause of death in patients with breast cancer, in part due to the lack of effective treatments. Euphorbia factor L2 (EFL2) is a diterpenoid extracted from Euphorbia lathyris L. seeds, which has attracted increasing attention in recent years due to its anticancer effect. However, the role and molecular mechanism of EFL2 in breast cancer liver metastasis remain unclear. In the present study, a breast cancer liver metastasis model was constructed and the effect of EFL2 on ascites generation in mice was examined. H&E staining detected inflammatory cells and tumor cells in the liver, small intestine and tumor tissues. Western blotting and reverse transcription­quantitative PCR were used to detect the protein and mRNA expression of NLR family pyrin domain containing­3 (NLRP3) and related molecules in tumor tissues. Immunohistochemistry was used to detect the levels of CD4 and CD8 T cells in tumor tissue and immunofluorescence was used to further detect the expression level of NLRP3. Finally, the aforementioned experiments were further verified by overexpressing NLPR3. It was found that EFL2 inhibited generation of ascites in the model in a dose­dependent manner. Furthermore, EFL2 inhibited tumor cell metastasis and enhanced immune cell infiltration. Meanwhile, EFL2 dose­dependently downregulated the mRNA and protein expression of NLRP3 and related molecules in the model, and overexpression of NLRP3 abolished these beneficial effects of EFL2. Taken together, the present experimental data suggested that EFL2 has a significant inhibitory effect on ascites of breast cancer liver metastasis in vivo, which may inhibit tumor cell metastasis by downregulating NLRP3 expression, providing an experimental basis for treating breast cancer metastasis.


Assuntos
Neoplasias da Mama , Neoplasias Hepáticas , Animais , Feminino , Humanos , Camundongos , Ascite , Neoplasias da Mama/tratamento farmacológico , Inflamassomos/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , RNA Mensageiro
2.
Aging (Albany NY) ; 15(17): 9217-9229, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709489

RESUMO

Euphorbia factor L1 (EFL1), a lathyrane-type diterpenoid from the medicinal herb Euphorbia lathyris L., has been documented to possess various pharmacologic actives. However, the function of EFL1 on breast cancer is not clear. In this study, we explored the effect and mechanism of EFL1 on breast cancer liver metastasis. Female BALB/c mice were subjected to breast cancer-surgical hepatic implantation (SHI) to establish breast cancer liver metastasis model in vivo. At 10 days post-surgery, mice were administrated with EFL1 once daily for a total of 2 weeks. Serum AST and ALT activities, abdominal circumference, peritoneal fluid, tumor weight and volume were determined to assess liver and mesenteric re-metastasis of breast cancer. H&E staining was used to observe morphology changes in tumor, liver and small intestine tissues. ELISA was applied to observe inflammatory levels. Tumor DDR1 expression and immune infiltration were determined using western blotting, immunohistochemistry and flow cytometer methods. Our results showed that EFL1 administration improved liver function (AST and ALT activities), ascites, liver metastasis and mesenteric re-metastasis in SHI mice. Also, SHI-induced inflammatory cell infiltration and IL-1ß, IL-6, TNF-α generation in ascites were decreased by EFL1 treatment. Mechanism study revealed that EFL1 intervention enhanced the ratios of CD4+ and CD8+ and CD49b+(NK) T lymphocytes and decreased Treg cells through downregulating DDR1 in the tumor of SHI mice. Furthermore, overexpression of DDR1 abolished the anti-liver metastasis effect and pro-immune infiltration action of EFL1 in SHI mice. Together, our findings suggested that EFL1 protects against breast cancer liver metastasis in vivo by targeting DDR1-mediated immune infiltration.


Assuntos
Diterpenos , Neoplasias Hepáticas , Melanoma , Segunda Neoplasia Primária , Animais , Feminino , Camundongos , Ascite , Neoplasias Hepáticas/tratamento farmacológico , Melanoma Maligno Cutâneo
3.
Zhongguo Zhong Yao Za Zhi ; 47(5): 1253-1261, 2022 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-35343152

RESUMO

This study aims to explore the effects of chemical ingredient groups B and C in Kansui Radix stir-fried with vinegar on the diversity of gut microbiota in the rat model of malignant ascites, identify the key differential microbial taxa, and reveal the biological mechanism of water-expelling effect of the two chemical ingredient groups. The rat model of malignant ascites induced by Walker-256 cells was established, and phenolphthalein was used as the positive drug. The rats were orally administrated with corresponding agents for consecutive 7 days. On day 6, fresh feces samples were collected from the rats, and 16 S rDNA high-throughput sequencing and GC-MS were employed to determine the composition of gut microbiota and the content of short-chain fatty acids, respectively. On day 7, serum and intestinal tissue samples were collected for the determination of related indicators. Compared with the control group, the model group showed decreased feces volume and urine volume(P<0.01), increased volume of ascites and levels of Na~+, K~+, and Cl~- in urine(P<0.01), down-regulated mRNA and protein levels of intestinal AQP8(P<0.01), lowered abundance of beneficial Lactobacillus(P<0.01) while risen abundance of potential pathogenic Lachnospiraceae and Anaeroplasma(P<0.01), and reduced content of short-chain fatty acids(P<0.01). Compared with the model group, administration with chemical ingredient groups B and C alleviated all the above indicators(P<0.01). In conclusion, chemical ingredient groups B and C in Kansui Radix stir-fried with vinegar could alleviate the disordered gut microbiota in rats with malignant ascites to expel water through increasing the abundance of beneficial Lactobacillus and reducing the abundance of harmful Lachnospiraceae and Anaeroplasma. This study can provide a reference for the reasonable clinical application of Kansui Radix stir-fried with vinegar.


Assuntos
Euphorbia , Microbioma Gastrointestinal , Ácido Acético/química , Animais , Ascite/tratamento farmacológico , Euphorbia/química , Raízes de Plantas/química , Ratos
4.
Zhongguo Zhong Yao Za Zhi ; 47(6): 1558-1566, 2022 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-35347953

RESUMO

Utilizing metabolomics technology, this study explored the change of fecal endogenous metabolites in Walker-256 rats with malignant ascites after the administration with Kansui Radix(KR) stir-fried with vinegar(VKR), sought the potential biomarkers in feces which were related to the treatment of malignant ascites by VKR and revealed the biological mechanism of water-expelling effect of VKR. Ultra-fast liquid chromatography-quadrupole-time-of-flight mass spectrometry(UFLC-Q-TOF-MS) was employed to detect the feces of rats in all groups. Principle component analysis(PCA) and partial least squares discriminant analysis(PLS-DA) were conducted to achieve pattern recognition. Combining t-test and variable importance in the projection(VIP) enabled the screening of potential biomarkers for the malignant ascites. Metabolic pathway analysis was accomplished with MetaboAnalyst. Correlation analysis was finally conducted integrating the sequencing data of gut microbiota to elucidate the mechanism underlying the water-expelling effect of VKR. The results showed that both KR and VKR could restore the abnormal metabolism of model rats to some extent, with VKR being inferior to KR in the regulation. Eleven potential biomarkers were identified to be correlated with the malignant ascites and five metabolic pathways were then enriched. Four kinds of gut microbiota were significantly related to the potential biomarkers. The water-expelling effect of VKR may be associated with the regulation of phenylalanine metabolism, biosynthesis of phenylalanine, tyrosine and tryptophan, tryptophan metabolism, glycerophospholipid metabolism, and glycosylphosphatidylinositol(GPI)-anchor biosynthesis. This study can provide a scientific basis for comprehensive understandings of the interaction between gut microbiota and host which has relation to the water-expelling effect of VKR and guide the reasonable clinical application of VKR.


Assuntos
Ácido Acético , Euphorbia , Animais , Ascite/tratamento farmacológico , Ascite/metabolismo , Fezes , Metabolômica , Ratos
5.
J Ethnopharmacol ; 267: 113489, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33091498

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Euphorbia kansui (EK) is the dried root of Euphorbia kansui S.L.Liou ex S.B.Ho. Clinically, processing with vinegar is for reducing toxicity of EK, and EK stir-fried with vinegar (VEK) is used to treat ascites and edema. VEK has been confirmed to reduce ascites by accelerating the promotion of intestinal contents. AIM OF THE STUDY: The study aimed to investigate whether gut microbiota could affect the expelling water retention effects and the intestinal oxidative damage of EK and VEK on malignant ascites effusion (MAE) rats. MATERIALS AND METHODS: Pseudo-germ-free (PGF) MAE rats or probiotic intervented MAE rats were treated with EK/VEK. Related indicators such as serum, ascites, urine, feces, gastrointestinal tissues were analyzed, and the structure of the gut microbiota were also studied. The relationship between gut microbiota and the expelling water retention effects of EK/VEK where then further investigated. RESULTS: VEK reduce the volume of ascites by promoting urine and feces excretion, AQP8 protein and mRNA expression, when comparing with the MAE rats, also VEK could regulate the disordered gut microbiota in MAE rats. Mixed antibiotics could diminish VEK's expelling water retention effects in MAE rats, but increased oxidative damage in intestine. While existence of gut microbiota (especially probiotics) played an important role in the protection of intestines in VEK treated MAE rats. CONCLUSION: VEK had obvious pharmacological effect on MAE and could regulate gut microbiota, but gut microbiota was not a necessary condition for its pharmacological effects. The probiotics played a synergistic role with VEK in the effects of expelling water retention and intestinal protection.


Assuntos
Ácido Acético/química , Ascite/prevenção & controle , Bactérias/efeitos dos fármacos , Culinária , Euphorbia , Microbioma Gastrointestinal/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Aquaporinas/genética , Aquaporinas/metabolismo , Ascite/etiologia , Ascite/microbiologia , Ascite/patologia , Bactérias/crescimento & desenvolvimento , Linhagem Celular Tumoral , Defecação/efeitos dos fármacos , Euphorbia/química , Temperatura Alta , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Intestino Delgado/patologia , Masculino , Neoplasias/complicações , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Probióticos/farmacologia , Ratos Sprague-Dawley , Micção/efeitos dos fármacos
6.
Toxicol In Vitro ; 57: 1-8, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30710624

RESUMO

Pekinenal, a diterpenoid from the roots of Euphorbia pekinensis Rupr., can cause serious intestinal toxicity. However, its toxic mechanism hasn't been comprehensively understood. This present study aims to clarify its toxic effects and investigate the potential mechanism. In vitro effects of pekinenal on cell proliferation, cell cycle and apoptosis were examined by performing experiments on rat intestinal crypt epithelial cells (IEC-6). Proteins and enzymes involved in cell apoptotic pathways were detected by Western blot and enzyme-linked immunosorbent assay (ELISA), and related mRNAs were detected by RT-PCR. The results showed that the cell cycle was arrested in G0/G1 phase, and apoptotic morphology changes in pekinenal-treated cells. Furthermore, pekinenal up-regulated the expression level of apoptotic protein including Bax, AIF, Apaf-1 and the expression level of mRNA such as Fas, FasL, TNFR1 and NF-κB, while down-regulated the expression level of Bcl-2, ultimately triggering the apoptosis of caspase dependence. In conclusion, the above data confirmed that pekinenal inhibited the proliferation of IEC-6 cells and induced cells apoptosis by modulating mitochondrial and death receptor pathways.


Assuntos
Apoptose/efeitos dos fármacos , Diterpenos/farmacologia , Células Epiteliais/efeitos dos fármacos , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/metabolismo , Euphorbia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Raízes de Plantas , Ratos , Receptores de Morte Celular/genética
7.
J Ethnopharmacol ; 219: 257-268, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29559373

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Kansui, the root of Euphorbia kansui S.L.Liou ex S.B.Ho (E.kansui), is a classical traditional Chinese medicine (TCM) with certain toxicity. According to the theory of TCM, kansui fry-baked wtith vinegar (VEK) possesses low toxicity and mild diuretic and purgative efficacy. In clinical practice, it is commonly used for the treatmtablent of ascites and oliguria. The present study aimed to evaluate the toxicity and efficacy of different fractions of VEK and reveal the underlying material basis by employing an animal model of malignant ascites effusion (MAE) in rats. MATERIALS AND METHODSTA: The MAE rats as the model were constructed in SPF male wistar rats by intraperitoneal injection of Walker-256 tumor cells. The MAE rats were used and randomly divided into the control group (normal rats), control groups with different fractions (VEKA, VEKB, VEKC and VEKD), model group (MAE rats), positive control group (model group with furosemide), model groups with different fractions (VEKA, VEKB, VEKC and VEKD). Histopathological observation was used to confirm Walker-256 tumor-bearing organ injuries in rats. For the efficacy evaluation, the ascites and urine volumes, the urinary electrolyte concentrations (Na+, K+ and Cl-) and pH, the ascites levels of pro-inflammatory cytokines (IL-2, IL-6, TNF-α, IFN-γ and VEGF), PRA, the serum levels of Ang II, ALD and ADH, as well as AQP8 protein expression in the gastrointestinal tract were detected. Furthermore, different levels of indicators were measured in the toxicity evaluation of different fractions both on normal and model rats, including serum liver enzymes (AST and ALT), serum oxidative damage parameters (GSH, MDA, LDH and SOD), expressions of inflammatory parameters (NF-κB, ICAM-1 and E-cadherin) and apoptosis signals (caspase-3, -8, -9, Bcl-2 and Bax) in the liver and gastrointestinal tract. RESULTS: Walker-256 tumor-bearing malignant ascites effusion rats showed obvious hepatic and gastrointestinal injuries by histopathological observation. In the efficacy evaluation, model rats treated with VEKB and VEKC showed significant urine increase (VEKB, P < 0.01; VEKC, P < 0.01) and ascites reduction (VEKB, P < 0.01; VEKC, P < 0.01). These two fractions also balanced the concentrations of Na+, K+ and Cl- in urine (VEKB, all P < 0.05; VEKC, all P < 0.05), remarkably decreased urinary pH (VEKB, P < 0.01; VEKC, P < 0.01), and reduced the ascites levels of IL-2, IL-6, TNF-α, IFN-γ and VEGF (VEKB, all P < 0.01; VEKC, all P < 0.01) in the model rats. Moreover, levels of PRA, the serum Ang II, ALD and ADH of model rats were decreased after treated by VEKB and VEKC (VEKB, all P < 0.05; VEKC, all P < 0.05). Meanwhile, the expression of gastrointestinal AQP8 of the model rats was also enhanced after treated by VEKB and VEKC (VEKB, P < 0.01; VEKC, P < 0.01). In the toxicity evaluation, although VEKB and VEKC caused toxic indexes moved to the worse aspects in normal rats, nearly all of these indicators notably improved in the model rats. Additionally, VEKA showed no effect on the indicators, either in the efficacy evaluation or in the toxicity evaluation. And VEKD could significantly improve some indicators (urine volume, concentration of K+ in urine, serum MDA, AI and caspase-9) in MAE rats. CONCLUSIONS: VEKB and VEKC were demonstrated a significant efficacy in treating malignant ascites effusion, which could reduce hepatic and gastrointestinal damage on the model rats but cause the same damage to the normal. These data embody the traditional Chinese medicine application principle: You Gu Wu Yun. And these results will provide reference for the safer and better clinical utilization of kansui.


Assuntos
Ácido Acético/uso terapêutico , Ascite/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Euphorbia , Raízes de Plantas , Animais , Ascite/metabolismo , Ascite/patologia , Avaliação Pré-Clínica de Medicamentos/métodos , Medicamentos de Ervas Chinesas/isolamento & purificação , Masculino , Ratos , Ratos Wistar , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA