Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
PLoS One ; 19(4): e0298947, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626179

RESUMO

Research has demonstrated that circular RNAs (circRNAs) exert critical functions in the occurrence and progression of numerous malignant tumors. CircPRMT5 was recently reported to be involved in the pathogenesis of cancers. However, the potential role of circPRMT5 in osteosarcoma needs further investigation. In present study, our results suggested that circPRMT5 was highly upregulated in osteosarcoma cells and mainly localizes in the cytoplasm. CircPRMT5 promoted the proliferation, migration and invasion capacities of osteosarcoma cells, and suppressed cell apoptosis. Knockdown of circPRMT5 exerted the opposite effects. Mechanically, circPRMT5 promoted the binding of CNBP to CDK6 mRNA, which enhanced the stability of CDK6 mRNA and facilitated its translation, thereby promoting the progression of osteosarcoma. Knockdown of CDK6 reversed the promoting effect of circPRMT5 on osteosarcoma cells. These findings suggest that circPRMT5 promotes osteosarcoma cell malignant activity by recruiting CNBP to regulate the translation and stability of CDK6 mRNA. Thus, circPRMT5 may represent a promising therapeutic target for osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica , Osteossarcoma/patologia , RNA Circular/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
ACS Nano ; 18(4): 2841-2860, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38251849

RESUMO

Manganese ions (Mn2+)-coordinated nanoparticles have emerged as a promising class of antitumor nanotherapeutics, capable of simultaneously disrupting the immunosuppressive tumor microenvironment (TME) and triggering the stimulator of interferon genes (STING) pathway-dependent antitumor immunity. However, the activation of STING signaling by Mn2+-based monotherapies is suboptimal for comprehensive stimulation of antigen presenting cells and reversal of immunosuppression in the TME. Here, we report the design of a Mn2+/CpG oligodeoxynucleotides (ODNs) codecorated black phosphorus nanosheet (BPNS@Mn2+/CpG) platform based on the Mn2+ modification of BPNS and subsequent adsorption of synthetic CpG ODNs. The coordination of Mn2+ significantly improved the stability of BPNS and the adsorption of CpG ODNs. The acidic TME and endosomal compartments can disrupt the Mn2+ coordination, triggering pH-responsive release of CpG ODNs and Mn2+ to effectively activate the Toll-like receptor 9 and STING pathways. As a result, M2-type macrophages and immature dendritic cells were strongly stimulated in the TME, thereby increasing T lymphocyte infiltration and reversing the immunosuppression within the TME. Phototherapy and chemodynamic therapy, utilizing the BPNS@Mn2+/CpG platform, have demonstrated efficacy in inducing immunogenic cell death upon 808 nm laser irradiation. Importantly, the treatment of BPNS@Mn2+/CpG with laser irradiation exhibited significant therapeutic efficacy against the irradiated primary tumor and effectively suppressed the growth of nonirradiated distant tumor. Moreover, it induced a robust immune memory, providing long-lasting protection against tumor recurrence. This study demonstrated the enhanced antitumor potency of BPNS@Mn2+/CpG in multimodal therapy, and its proof-of-concept application as a metal ion-modified BPNS material for effective DNA/drug delivery and immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Oligodesoxirribonucleotídeos/farmacologia , Terapia Combinada , Imunoterapia , Neoplasias/tratamento farmacológico , Microambiente Tumoral
3.
Oncol Lett ; 27(1): 40, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38108070

RESUMO

Primary cardiac lymphomas display a low frequency, sudden onset, swift progression of illness and elevated mortality rates. The current study presents a unique instance of primary cardiac diffuse large B-cell lymphoma and examines its clinical manifestations, pathological characteristics and differential diagnosis. A 64-year-old male patient sought medical attention due to cardiac debility and exertional dyspnea persisting for >10 days. Chest enhanced computed tomography revealed a moderately enhancing irregular mass in the ventricular area, exhibiting limited demarcation from the pericardium and left atrium, accompanied by irregular thickening of the interventricular septum. The postoperative specimen showed the presence of yellow fish-like tumor tissue. Immunohistochemical analysis revealed the presence of lymphocytes positive for CD20, BCL-2, BCL-6, c-Myc-binding protein, mutated melanoma-associated antigen 1 and CD79a, along with a high Ki-67 proliferation index of 80%. Conversely, CD10, CD30, CD3, pan cytokeratin, cyclin D1, desmin and vimentin marker results were found to be negative. Additionally, in situ hybridization demonstrated a lack of Epstein-Barr virus-encoded small RNA expression. The present case report emphasizes the significance of conducting a thorough analysis of the clinical manifestations of diffuse large B-cell lymphoma to assist clinicians in establishing a diagnosis and determining an effective treatment approach, thereby enhancing the patient's prognosis.

4.
Cell Commun Signal ; 21(1): 363, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38115126

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is a devastating disease that lacks effective drugs for targeted therapy. Previously, we found that the third-generation epidermal growth factor receptor (EGFR) inhibitor AZD-9291 persistently blocked the activation of the ERK pathway but had no inhibitory effect on the phosphoinositide 3-kinase (PI3K)/Akt pathway. Given that the PI3K inhibitor GDC-0084 is being evaluated in phase I/II clinical trials of GBM treatment, we hypothesized that combined inhibition of the EGFR/ERK and PI3K/Akt pathways may have a synergistic effect in the treatment of GBM. METHODS: The synergistic effects of cotreatment with AZD-9291 and GDC-0084 were validated using cell viability assays in GBM and primary GBM cell lines. Moreover, the underlying inhibitory mechanisms were assessed through colony formation, EdU proliferation, and cell cycle assays, as well as RNA-seq analyses and western blot. The therapeutic effects of the drug combination on tumor growth and survival were investigated in mice bearing tumors using subcutaneously or intracranially injected LN229 xenografts. RESULTS: Combined treatment with AZD-9291 and GDC-0084 synergistically inhibited the proliferation and clonogenic survival, as well as induced cell cycle arrest of GBM cells and primary GBM cells, compared to monotherapy. Moreover, AZD-9291 plus GDC-0084 combination therapy significantly inhibited the growth of subcutaneous tumors and orthotopic brain tumor xenografts, thus prolonging the survival of tumor-bearing mice. More importantly, the combination of AZD-9291 and GDC-0084 simultaneously blocked the activation of the EGFR/MEK/ERK and PI3K/AKT/mTOR signaling pathways, thereby exerting significant antitumor activity. CONCLUSION: Our findings demonstrate that the combined blockade of the EGFR/MEK/ERK and PI3K/AKT/mTOR pathways is more effective against GBM than inhibition of each pathway alone, both in vitro and in vivo. Our results suggest that AZD-9291 combined with GDC-0084 may be considered as a potential treatment strategy in future clinical trials. Video Abstract.


Assuntos
Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Receptores ErbB/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
5.
Int J Immunopathol Pharmacol ; 37: 3946320231210737, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37890097

RESUMO

Introduction: G-protein coupled receptor 30 (GPR30) is associated with cell metastasis and drug resistance in many different cancer cells. The present study aimed to reveal the sensitivity of GPR30 to gefitinib in non-small cell lung cancer (NSCLC) cells.Methods: Cell viability and proliferation were detected using cell counting kit 8 and 5-ethynyl-2'-deoxyuridine assays, respectively. Western blotting and quantitative real-time reverse transcription PCR were used to detect GPR30 or epithelial-mesenchyme transition (EMT)-related mRNA and protein expression.Results: The results showed that GPR30 expression is associated with gefitinib sensitivity. G15, as a GPR30 antagonist, reduced GPR30 expression. We chose the maximum concentration of G15 with minimal cytotoxicity to detect cell viability after combined treatment with gefitinib in NSCLC cells, which indicated that G15 could increase sensitivity to gefitinib. However, the effect of G15 on gefitinib sensitivity disappeared after treatment with a small interfering RNA targeting GPR30. Further research showed that G15 or GPR30 siRNA treatment could upregulate E-cadherin and downregulate vimentin levels.Conclusion: Taken together, these data suggested that G15 could enhance NSCLC sensitivity to gefitinib by inhibition of GPR30 and EMT.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Gefitinibe/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Transição Epitelial-Mesenquimal , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , RNA Interferente Pequeno , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/uso terapêutico , Proliferação de Células
6.
Mikrochim Acta ; 190(8): 295, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37458810

RESUMO

The development and performance of a DNA probe adsorbing Mn2+-modified black phosphorus (BP@Mn2+/DNA) hybrid nanosensor is reported that enables rapid detection of cancer-derived exosomal microRNAs (miRNAs) and exosomes. This two-dimensional (2D) nanosensor can spontaneously penetrate the lipid bilayer of exosome membranes owing to its ultra-thin geometry. Subsequently, the adsorbed probe specifically hybridizes with the target miRNA and then dissociates from the nanosensor surface, generating fluorescent signals. Therefore, the BP@Mn2+/DNA nanosensor can differentiate between colorectal cancer (CRC) cell-derived exosomes and those derived from intestinal epithelial cells through sensing of exosomal miRNAs. Furthermore, when the epithelial cell adhesion molecule (EpCAM) aptamer is adsorbed onto BP@Mn2+ instead of the miRNA probe, the nanosensor is able to distinguish exosomes derived from the plasma of CRC patients from those of healthy controls by the recognition ability of the EpCAM aptamer. By utilizing this nanosensor, we were able to effectively differentiate cancer-derived exosomes through the direct detection of miRNA-21 within the exosomes, as well as the identification of specific exosomal membrane proteins. This nanosensor design paves the way for the development of rapid and efficient cancer-derived exosomal miRNA and exosome biosensing nanoplatforms.


Assuntos
Exossomos , MicroRNAs , Neoplasias , Humanos , Exossomos/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Neoplasias/metabolismo , Oligonucleotídeos/metabolismo
7.
J Vis Exp ; (196)2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37358272

RESUMO

Salidroside (Sal) contains anti-carcinogenic, anti-hypoxic, and anti-inflammatory pharmacological activities. However, its underlying anti-breast cancer mechanisms have been only incompletely elucidated. Hence, this protocol intended to decode the potential of Sal in regulating the PI3K-AKT-HIF-1α-FoxO1 pathway in the malignant proliferation of human breast cancer MCF-7 cells. First, the pharmacological activity of Sal against MCF-7 was evaluated by CCK-8 and cell scratch assays. Moreover, the resistance of MCF-7 cells was measured by migration and Matrigel invasion assays. For cell apoptosis and cycle assays, MCF-7 cells were processed in steps with annexin V-FITC/PI and cell cycle-staining detection kits for flow cytometry analyses, respectively. The levels of reactive oxygen species (ROS) and Ca2+ were examined by DCFH-DA and Fluo-4 AM immunofluorescence staining. The activities of Na+-K+-ATPase and Ca2+-ATPase were determined using the corresponding commercial kits. The protein and gene expression levels in apoptosis and the PI3K-AKT-HIF-1α-FoxO1 pathway were further determined using western blot and qRT-PCR analyses, respectively. We found that Sal treatment significantly restricted the proliferation, migration, and invasion of MCF-7 cells with dose-dependent effects. Meanwhile, Sal administration also dramatically forced MCF-7 cells to undergo apoptosis and cell cycle arrest. The immunofluorescence tests showed that Sal observably stimulated ROS and Ca2+ production in MCF-7 cells. Further data confirmed that Sal promoted the expression levels of pro-apoptotic proteins, Bax, Bim, cleaved caspase-9/7/3, and their corresponding genes. Consistently, Sal intervention prominently reduced the expression of the Bcl-2, p-PI3K/PI3K, p-AKT/AKT, mTOR, HIF-1α, and FoxO1 proteins and their corresponding genes. In conclusion, Sal can be used as a potential herb-derived compound for treating breast cancer, as it may reduce the malignant proliferation, migration, and invasion of MCF-7 cells by inhibiting the PI3K-AKT-HIF-1α-FoxO1 pathway.


Assuntos
Neoplasias da Mama , Proteínas Proto-Oncogênicas c-akt , Humanos , Feminino , Células MCF-7 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Mama/patologia , Apoptose , Proliferação de Células
8.
Theranostics ; 13(5): 1490-1505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056564

RESUMO

Background: Glioblastomas are the most common and malignant central nervous system (CNS) tumors that occupied a highly heterogeneous tumor microenvironment (TIME). Long noncoding RNAs (lncRNAs), whose expression can be modified by DNA methylation, are emerging as critical regulators in the immune system. However, knowledge about the epigenetic changes in lncRNAs and their contribution to the immune heterogeneity of glioma is still lacking. Methods: In this study, we integrated paired methylome and transcriptome datasets of glioblastomas and identified 2 robust immune subtypes based on lncRNA methylation features. The immune characteristics of glioma subtypes were compared. Furthermore, immune-related lncRNAs were identified and their relationships with immune evasion were evaluated. Results: Glioma immunophenotypes exhibited distinct immune-related characteristics as well as clinical and epigenetic features. 149 epigenetically regulated (ER) lncRNAs were recognized that possessed inverse variation in epigenetic and transcriptional levels between glioma subtypes. Immune-related lncRNAs were further identified through the investigation of their correlation with immune cell infiltrations and immune-related pathways. In particular, the 'Hot' glioma subtype with higher immunoactivity while a worse survival outcome was found to character immune evasion features. We finally prioritized candidate ER lncRNAs associated with immune evasion markers and response to glioma immunotherapy. Among them, CD109-AS1 and LINC02447 were validated as novel immunoevasive biomarkers for glioma through in vitro experiments. Conclusion: In summary, our study systematically reveals the crosstalk among DNA methylation, lncRNA, and immune regulation in glioblastomas, and will facilitate the development of epigenetic immunotherapy approaches.


Assuntos
Glioblastoma , RNA Longo não Codificante , Evasão Tumoral , Glioblastoma/genética , Glioblastoma/imunologia , Glioblastoma/patologia , Metilação de DNA , Humanos , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Metilação , Imunofenotipagem , Microambiente Tumoral , Glioma/genética , Glioma/imunologia , Glioma/patologia , Epigênese Genética
9.
J Clin Med ; 12(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36836013

RESUMO

We aimed to characterize the clinical profiles and short-term outcomes of adult patients with full-frequency idiopathic sudden sensorineural hearing loss (ISSNHL) treated uniformly with combination therapy, and to determine the prognostic predictors for the combination therapy. A total of 131 eligible cases hospitalized in our department from January 2018 to June 2021 were retrospectively reviewed. All enrolled cases received a standardized combination therapy employing intravenous methylprednisolone, batroxobin, and Ginkgo biloba extract during the 12 days of hospitalization. The clinical and audiometric profiles were compared between recovered patients and their unrecovered counterparts. The overall recovery rate was 57.3% in the study. Accompanying vertigo (odds ratio = 0.360, p = 0.006) and body mass index (BMI, odds ratio = 1.158, p = 0.016) were two independent predictors of hearing outcomes of the therapy. The male gender and cigarette-smoking history were marginally associated with good hearing prognosis (p = 0.051 and 0.070, respectively). Patients with BMI ≥ 22.4 kg/m2 had a better chance of hearing recovery (p = 0.02). Conclusions: Accompanying vertigo and low BMI (<22.4 kg/m2) were independently associated with poor prognosis for full-frequency ISSNHL in combination therapy. Male gender and cigarette-smoking history might be considered positive effects on hearing prognosis.

10.
Artigo em Chinês | MEDLINE | ID: mdl-36217650

RESUMO

Objective:To explore the correlation between high-resolution computed tomography(HRCT) of temporal bones, SLC26A4 gene mutation and hearing loss in patients with enlarged vestibular aqueduct(EVA). Methods:The medical records of 257 subjects hospitalized for moderate to severe sensorineural hearing loss in the Department of Otolaryngology Head and Neck Surgery, Hainan General Hospital between May 2018 to 2021 were retrospectively reviewed. All included cases received audiological examination, HRCT scanning of temporal bones and SLC26A4 gene sequencing. According to the Valvassori standard, cases with the diameter from the common peduncle of the semicircular canal to the midpoint of the outer orifice of the vestibular aqueduct(MP) over 1.5 mm, or the diameter of the outer orifice of the vestibular aqueduct(OP) more than 2.0 mm were diagnosed as EVA. There were 22 cases(44 ears) of EVA in the study, aged between 6 months to 17 years old. Based on the hearing changes at birth and during growth, 18 ears of which were classified into the stable hearing group, while the other 26 ears in the unstable group. Moreover, all involved cases were grouped by MP(1.5 to <3.0 mm and ≥3.0 mm) and OP(2.0 to <4.0 mm and ≥4.0 mm). SPSS 25.0 software was applied in the study. The correlation between hearing loss and MP and OP was analyzed. The results of HRCT of temporal bones and SLC26A4 gene sequencing were compared as well. Results:Though the size of MP and OP was not statistically different between the stable and hearing groups in EVA ears(P>0.05), it was significantly correlated with the severity of hearing loss(P<0.05). Of the 22 EVA patients diagnosed by HRCT, 21 were positive for SLC26A4 gene mutation. The positive rate of EVA by SLC26A4 gene sequencing was highly consistent with HRCT(Kappa=0.975). Conclusion:The size of MP and OP in EVA patients was related to the degree of hearing loss, but not to the stable nature of hearing loss. Temporal bone HRCT scanning and SLC26A4 gene sequencing are highly consistent in the diagnosis of EVA. The latter has no radiation and can be combined with hearing screening for early diagnosis of EVA.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Transportadores de Sulfato , Aqueduto Vestibular , Adolescente , Criança , Pré-Escolar , Perda Auditiva/genética , Perda Auditiva Neurossensorial/diagnóstico por imagem , Perda Auditiva Neurossensorial/genética , Humanos , Lactente , Mutação , Estudos Retrospectivos , Transportadores de Sulfato/genética , Osso Temporal/diagnóstico por imagem , Aqueduto Vestibular/anormalidades , Aqueduto Vestibular/diagnóstico por imagem
11.
Transl Cancer Res ; 11(6): 1781-1794, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35836521

RESUMO

Background: Glioblastoma is the most common type of malignant tumor of the brain. Despite substantial improvements in therapy, the 5-year survival rate of patients with glioblastoma remains low. Antitumor drug development has encountered considerable obstacles, which can be attributed to metastasis and the blood-brain barrier (BBB). Hesperetin (HSP), derived from citrus fruits, exhibits several biological properties, including anticancer and anti-inflammatory activities. In addition, in vitro models have shown that HSP can easily cross the BBB. The purpose of the present study was to explore the effects and underlying mechanisms of HSP on glioblastoma cells. Methods: GL261 cell were cultured and treated with different dose HSP. The cell viability was assessed with Cell Counting Kit-8 (CCK-8) assay. The cell apoptosis was determined using an Annexin V/propidine iodide (PI) staining and Hoechst staining and detection assay, cell migration and invasion were observed on GL261 cells using Matrigel-coated Transwells and Wound-Healing assay. The expression of proteins was detected by Western blotting. Results: HSP suppressed cell proliferation and could induce apoptosis, the latter of which might be regulated through the Phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and nuclear factor-kappa B (NF-κB) pathways. Furthermore, HSP inhibited cell migration and invasion by downregulating the expression of matrix metalloproteinase-2 (MMP-2) and MMP-9, and inhibited epithelial-mesenchymal transition (EMT) by upregulating the expression of E-cadherin while downregulating N-cadherin and vimentin expression. Conclusions: These findings suggest HSP to be an alternative preventive and therapeutic antiglioblastoma drug that may be especially useful for patients with recurrent glioblastoma.

12.
Cancer Sci ; 113(5): 1652-1668, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35293097

RESUMO

Nasopharyngeal carcinoma (NPC) is prevalent in East Asia and causes increased health burden. Elucidating the regulatory mechanism of NPC progression is important for understanding the pathogenesis of NPC and developing novel therapeutic strategies. Nasopharyngeal carcinoma and normal tissues were collected. Nasopharyngeal carcinoma cell proliferation, migration, and invasion were evaluated using CCK-8, colony formation, wound healing, and transwell assays, respectively. A xenograft mouse model of NPC was established to analyze NPC cell growth and metastasis in vivo. The expression of miR-106a-5p, FBXW7, TRIM24, and SRGN was determined with RT-qPCR and Western blot. MiR-106a-5p, TRIM24, and SRGN were upregulated, and FBXW7 was downregulated in NPC tissues and cells. Exosomal miR-106a-5p could enter NPC cells, and its overexpression promoted the proliferation, migration, invasion, and metastasis of NPC cells, which were suppressed by knockdown of exosomal miR-106a-5p. MiR-106a-5p targeted FBXW7 to regulate FBXW7-mediated degradation of TRIM24. Furthermore, TRIM24 regulated SRGN expression by binding to its promoter in NPC cells. Suppression of exosomal miR-106a-5p attenuated NPC growth and metastasis through the FBXW7-TRIM24-SRGN axis in vivo. Exosomal miR-106a-5p accelerated the progression of NPC through the FBXW7-TRIM24-SRGN axis. Our study elucidates novel regulatory mechanisms of NPC progression and provides potential exosome-based therapeutic strategies for NPC.


Assuntos
MicroRNAs , Neoplasias Nasofaríngeas , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/patologia
13.
Front Oncol ; 11: 691318, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277436

RESUMO

Head and neck squamous cell carcinoma (HNSCC) rank seventh among the most common type of malignant tumor worldwide. Various evidences suggest that transcriptional factors (TFs) play a critical role in modulating cancer progression. However, the prognostic value of TFs in HNSCC remains unclear. Here, we identified a risk model based on a 12-TF signature to predict recurrence-free survival (RFS) in patients with HNSCC. We further analyzed the ability of the 12-TF to predict the disease-free survival time and overall survival time in HNSCC, and found that only NR5A2 down-regulation was strongly associated with shortened overall survival and disease-free survival time in HNSCC. Moreover, we systemically studied the role of NR5A2 in HNSCC and found that NR5A2 regulated HNSCC cell growth in a TP53 status-dependent manner. In p53 proficient cells, NR5A2 knockdown increased the expression of TP53 and activated the p53 pathway to enhance cancer cells proliferation. In contrast, NR5A2 silencing suppressed the growth of HNSCC cells with p53 loss/deletion by inhibiting the glycolysis process. Therefore, our results suggested that NR5A2 may serve as a promising therapeutic target in HNSCC harboring loss-of-function TP53 mutations.

14.
Brain Res ; 1768: 147586, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34289379

RESUMO

Cannabidiol is a natural herbal medicine known to protect the brain from traumatic brain injury (TBI). Here, a TBI rat model was established, with cannabidiol administered intraperitoneally at doses of 5, 10, or 20 mg/kg, 30 min before surgery and 6 h after surgery until sacrifice. Brain water content, body weight, and modified neurological severity scores were determined, and enzyme-linked immunosorbent assay, immunofluorescence staining, hematoxylin and eosin staining, Nissl staining, Evans-blue dye extravasation, and western blotting were performed. Results showed that cannabidiol decreased the number of aquaporin-4-positive and glial fibrillary acidic protein-positive cells. Cannabidiol also significantly reduced the protein levels of proinflammatory cytokines (TNF-α and IL-1ß) and significantly increased the expression of tight junction proteins (claudin-5 and occludin). Moreover, cannabidiol administration significantly mitigated water content in the brain after TBI and blood-brain barrier disruption and ameliorated the neurological deficit score after TBI. Cannabidiol administration improved the integrity and permeability of the blood-brain barrier and reduced edema in the brain after TBI.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Canabinoides/farmacologia , Animais , Aquaporina 4/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Edema Encefálico/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Canabinoides/metabolismo , Claudina-5/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Interleucina-1beta/metabolismo , Masculino , Modelos Animais , Fármacos Neuroprotetores/farmacologia , Ocludina/metabolismo , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
15.
Front Genet ; 12: 663098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122515

RESUMO

Symptoms of coronavirus disease 2019 (COVID-19) range from asymptomatic to severe pneumonia and death. A deep understanding of the variation of biological characteristics in severe COVID-19 patients is crucial for the detection of individuals at high risk of critical condition for the clinical management of the disease. Herein, by profiling the gene expression spectrum deduced from DNA coverage in regions surrounding transcriptional start site in plasma cell-free DNA (cfDNA) of COVID-19 patients, we deciphered the altered biological processes in the severe cases and demonstrated the feasibility of cfDNA in measuring the COVID-19 progression. The up- and downregulated genes in the plasma of severe patient were found to be closely related to the biological processes and functions affected by COVID-19 progression. More importantly, with the analysis of transcriptome data of blood cells and lung cells from control group and cases with severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection, we revealed that the upregulated genes were predominantly involved in the viral and antiviral activity in blood cells, reflecting the intense viral replication and the active reaction of immune system in the severe patients. Pathway analysis of downregulated genes in plasma DNA and lung cells also demonstrated the diminished adenosine triphosphate synthesis function in lung cells, which was evidenced to correlate with the severe COVID-19 symptoms, such as a cytokine storm and acute respiratory distress. Overall, this study revealed tissue involvement, provided insights into the mechanism of COVID-19 progression, and highlighted the utility of cfDNA as a noninvasive biomarker for disease severity inspections.

16.
Chin J Integr Med ; 27(11): 819-824, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33449280

RESUMO

OBJECTIVE: To elucidate the underlying mechanism of Panax notoginseng saponin (PNS) on gastric epithelial cell injury and barrier dysfunction induced by dual antiplatelet (DA). METHODS: Human gastric mucosal epithelial cell (GES-1) was cultured and divided into 4 groups: a control, a DA, a PNS+DA and a LY294002+PNS+DA group. GES-1 apoptosis was detected by flow cytometry, cell permeability were detected using Transwell, level of prostaglandins E2 (PGE2), 6-keto-prostaglandin F1α (6-keto-PGF1α) and vascular endothelial growth factor (VEGF) in supernatant were measured by enzyme linked immunosorbent assay (ELISA), expression of phosphatidylinositide 3-kinase (PI3K), phosphorylated-PI3K (p-PI3K), Akt, phosphorylated-Akt (p-Akt), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), glycogen synthase kinase-3ß (GSK-3ß) and Ras homolog gene family member A (RhoA) were measured by Western-blot. RESULTS: DA induced apoptosis and hyper-permeability in GES-1, reduced supernatant level of PGE2, 6-keto-PGF1α and VEGF (P<0.05). Addition of PNS reduced the apoptosis of GES-1 caused by DA, restored the concentration of PGE2, 6-keto-PGF1α and VEGF (P<0.05). In addition, PNS attenuated the alteration of COX-1 and COX-2 expression induced by DA, up-regulated p-PI3K/p-Akt, down-regulated RhoA and GSK-3ß. LY294002 mitigated the effects of PNS on cell apoptosis, cell permeability, VEGF concentration, and expression of RhoA and GSK-3ß significantly. CONCLUSIONS: PNS attenuates the suppression on COX/PG pathway from DA, alleviates DA-induced GES-1 apoptosis and barrier dysfunction through PI3K/Akt/ VEGF-GSK-3ß-RhoA network pathway.


Assuntos
Panax notoginseng , Saponinas , Ciclo-Oxigenase 1 , Células Epiteliais/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores da Agregação Plaquetária , Proteínas Proto-Oncogênicas c-akt/metabolismo , Saponinas/farmacologia , Fator A de Crescimento do Endotélio Vascular , Proteína rhoA de Ligação ao GTP
17.
Sci Rep ; 11(1): 823, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436913

RESUMO

The challenge of decoding information about complex diseases hidden in huge number of single nucleotide polymorphism (SNP) genotypes is undertaken based on five dbGaP studies. Current genome-wide association studies have successfully identified many high-risk SNPs associated with diseases, but precise diagnostic models for complex diseases by these or more other SNP genotypes are still unavailable in the literature. We report that lung cancer, breast cancer and prostate cancer as the first three top cancers worldwide can be predicted precisely via 240-370 SNPs with accuracy up to 99% according to leave-one-out and 10-fold cross-validation. Our findings (1) confirm an early guess of Dr. Mitchell H. Gail that about 300 SNPs are needed to improve risk forecasts for breast cancer, (2) reveal an incredible fact that SNP genotypes may contain almost all information that one wants to know, and (3) show a hopeful possibility that complex diseases can be precisely diagnosed by means of SNP genotypes without using phenotypical features. In short words, information hidden in SNP genotypes can be extracted in efficient ways to make precise diagnoses for complex diseases.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias Pulmonares/diagnóstico , Neoplasias da Próstata/diagnóstico , Algoritmos , Neoplasias da Mama/genética , Biologia Computacional , Simulação por Computador , Bases de Dados Genéticas , Feminino , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Neoplasias Pulmonares/genética , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/genética
18.
Lasers Med Sci ; 36(4): 783-790, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32651700

RESUMO

The optical properties of hemoglobin could indicate the degree of hemolysis. We aimed to utilize this to develop a real-time blood damage monitoring device for cardiopulmonary bypass (CPB) systems. The real-time blood damage monitoring device comprised a near-infrared spectroscopy optical module with a fiber spectrometer and monitoring platform and computer software developed using LabVIEW 2017. The fiber spectrometer operated at wavelengths of 545, 660, and 940 nm and contained a detector fiber bundle (source-detector distance = 1.0-2.5 cm). CPB operation was simulated using an artificial heart-lung machine with a flow rate of 3, 4, or 5 L/min. Four hundred milliliter of anticoagulated porcine blood was continuously rotated for 4 h. The transmittance, reflectivity, and absorbance of the blood were measured using the optical device at a frequency of 25 Hz and then digitally averaged into 1-s interval. Samples of damaged blood were collected at regular intervals for in vitro hemolysis tests to calculate the normalized index of hemolysis (NIH). All experiments were repeated three times. We prepared 28 blood bags containing 400 ml of anticoagulant. Paired t test was used to examine the test-retest reliability of the differences between the three methods and control samples. Statistical tests revealed significant differences in the mean values between the test and control groups over time (P < 0.01). Relationship was established between the real-time monitoring results and the NIH values. An effective blood damage detection method that combined in vitro hemolysis tests and near-infrared spectroscopy was achieved. The results demonstrate the clinical potential of a real-time, low-cost, and reliable blood damage monitoring device to improve the safety of CPB operation.


Assuntos
Ponte Cardiopulmonar/instrumentação , Espectroscopia de Luz Próxima ao Infravermelho , Máquina Coração-Pulmão , Hemoglobinas/metabolismo , Hemólise , Humanos , Reprodutibilidade dos Testes
19.
Skin Res Technol ; 27(2): 272-276, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33174647

RESUMO

BACKGROUND: In clinical, common facial papule dermatosis such as seborrheic keratosis (SK), verruca plana (VP), syringoma and lichen nitidus (LN) is often misdiagnosed. Summarizing in vivo reflectance confocal microscopy (RCM) features of the facial papule dermatosis is helpful in the diagnosis of ambiguous lesions. The purpose of this study was to evaluate the features of SK, VP, syringoma, and LN in RCM. METHODS: We recruited 144 patients referred for unequivocal facial papule dermatosis including 60 patients with SK, 60 patients with VP, 10 patients with syringoma, and 14 patients with LN. The RCM images were evaluated at the epidermis, the dermoepidermal junction, and the dermis from both papule lesions and normal skin. RESULTS: In the epidermis, the cerebriform shape was the main RCM characteristic of SK and the "petal-like" structure was the main RCM characteristic of VP. In the dermoepidermal junction, the RCM features we found were as follows: For SK, the bright dermal papillary rings, the abnormal dermal papilla and the looped vessels were also observed at the abnormal dermal papilla. For VP, the bright dermal papillary rings and the point-like blood vessels were also observed at the round dermal papills. For LN, the round, enlarged, well-circumscribed dermal papillae and the enlarged dermal papillaes were heavily laden with individual highly refractive cells. In the dermis, RCM examination revealed brightly refractile teratogenous sweat tube, designing variably visible bright "moon" structures in all syringoma patients. CONCLUSION: Considering our results, RCM may be useful to non-invasively discriminate SK, VP, syringoma and LN in vivo.


Assuntos
Ceratose Seborreica , Líquen Nítido , Neoplasias Cutâneas , Neoplasias das Glândulas Sudoríparas , Siringoma , Verrugas , Humanos , Ceratose Seborreica/diagnóstico por imagem , Microscopia Confocal , Neoplasias das Glândulas Sudoríparas/diagnóstico por imagem , Verrugas/diagnóstico por imagem
20.
Anal Chim Acta ; 1121: 1-10, 2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32493583

RESUMO

Many polymer decorated/modified 2D nanomaterials have been developed as enhanced drug delivery systems and photothermal theranostic nanoagents. However, few reports describe the use of these novel nanomaterials as nanoplatforms for biomolecule sensing. Herein, we used calcium-cation-doped polydopamine-modified (PDA-modified) 2D black phosphorus (BP) nanosheets (BP@PDA) as a sensing nanoplatform for the detection of nucleic acids and proteins in complex biological samples. Fluorescent-dye-labeled single-strand DNA aptamer/probes are adsorbed by the Ca2+-doped BP@PDA mediated by calcium-cation coordination. The PDA coating enhances the stability of the inner BP, provides binding sites to DNA nucleobases, and quenches fluorescence. Without any chemical conjugation, this sensing nanoplatform selectively and specifically detects protein (human thrombin, linear range: 10-25 nM, detection limit: 0.02 nM), single-strand DNA (linear range: 1-10 nM, detection limit: 0.52 nM) in 1% serum diluted samples, and senses intracellular mRNAs (C-myc, and actin) in living cells. The nanoplatform exhibits the advantages of both the 2D nanomaterial (BP) and the coating polymer (PDA), naturally enters living cells unaided by transfection agents, resists enzymatic lysis and shows high biocompatibility. This nanoplatform design contributes towards future biomolecule analytical method development based on polymer decorated/modified 2D nanomaterials.


Assuntos
Cálcio/química , Indóis/química , Nanoestruturas/química , Fósforo/química , Polímeros/química , Espectrometria de Fluorescência/métodos , Trombina/análise , Cátions/química , Sobrevivência Celular/efeitos dos fármacos , Sondas de DNA/química , Sondas de DNA/metabolismo , DNA de Cadeia Simples/análise , DNA de Cadeia Simples/química , Corantes Fluorescentes/química , Células Hep G2 , Humanos , Limite de Detecção , Microscopia Confocal/métodos , Nanoestruturas/toxicidade , Proteínas Proto-Oncogênicas c-myc/genética , RNA Mensageiro/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA