Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33558234

RESUMO

Using a gain-of-function screen in Drosophila, we identified the Krüppel-like factor Cabut (Cbt) as a positive regulator of cell cycle gene expression and cell proliferation. Enforced cbt expression is sufficient to induce an extra cell division in the differentiating fly wing or eye, and also promotes intestinal stem cell divisions in the adult gut. Although inappropriate cell proliferation also results from forced expression of the E2f1 transcription factor or its target, Cyclin E, Cbt does not increase E2F1 or Cyclin E activity. Instead, Cbt regulates a large set of E2F1 target genes independently of E2F1, and our data suggest that Cbt acts via distinct binding sites in target gene promoters. Although Cbt was not required for cell proliferation during wing or eye development, Cbt is required for normal intestinal stem cell divisions in the midgut, which expresses E2F1 at relatively low levels. The E2F1-like functions of Cbt identify a distinct mechanism for cell cycle regulation that may be important in certain normal cell cycles, or in cells that cycle inappropriately, such as cancer cells.


Assuntos
Ciclo Celular/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Animais , Olho Composto de Artrópodes/citologia , Olho Composto de Artrópodes/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Mutação com Ganho de Função , Teste de Complementação Genética , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Fatores de Transcrição/genética
2.
Dev Biol ; 433(2): 324-343, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29108672

RESUMO

Understanding how somatic stem cells respond to tissue needs is important, since aberrant somatic stem cell behaviors may lead to tissue degeneration or tumorigenesis. Here, from an in vivo RNAi screen targeting transcription factors that regulate intestinal regeneration, we uncovered a requirement for the Drosophila FoxA transcription factor Fork head (Fkh) in the maintenance of intestinal stem/progenitor cell identities. FoxA/Fkh maintains the expressions of stem/progenitor cell markers and is required for stem cell proliferation during intestinal homeostasis and regeneration. Furthermore, FoxA/Fkh prevents the intestinal stem/progenitor cells from precocious differentiation into the Enterocyte lineage, likely in cooperation with the transcription factor bHLH/Daughterless (Da). In addition, loss of FoxA/Fkh suppresses the intestinal tumorigenesis caused by Notch pathway inactivation. To reveal the gene program underlying stem/progenitor cell identities, we profiled the genome-wide chromatin binding sites of transcription factors Fkh and Da, and interestingly, around half of Fkh binding regions are shared by Da, further suggesting their collaborative roles. Finally, we identified the genes associated with their shared binding regions. This comprehensive gene list may contain stem/progenitor maintenance factors functioning downstream of Fkh and Da, and would be helpful for future gene discoveries in the Drosophila intestinal stem cell lineage.


Assuntos
Drosophila melanogaster/fisiologia , Fatores de Transcrição Forkhead/fisiologia , Intestinos/citologia , Proteínas Nucleares/fisiologia , Células-Tronco/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Sítios de Ligação , Linhagem da Célula , Autorrenovação Celular , Cromatina/metabolismo , Citocinas/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Enterócitos/metabolismo , Regulação da Expressão Gênica , Interferência de RNA , Fatores de Transcrição/fisiologia
3.
Cell Mol Life Sci ; 73(17): 3337-49, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27137186

RESUMO

Many adult tissues and organs are maintained by resident stem cells that are activated in response to injury but the mechanisms that regulate stem cell activity during regeneration are still poorly understood. An emerging system to study such problem is the Drosophila adult midgut. Recent studies have identified both intrinsic factors and extrinsic niche signals that control the proliferation, self-renewal, and lineage differentiation of Drosophila adult intestinal stem cells (ISCs). These findings set up the stage to interrogate how niche signals are regulated and how they are integrated with cell-intrinsic factors to control ISC activity during normal homeostasis and regeneration. Here we review the current understanding of the mechanisms that control ISC self-renewal, proliferation, and lineage differentiation in Drosophila adult midgut with a focus on the niche signaling network that governs ISC activity in response to injury.


Assuntos
Drosophila/metabolismo , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Intestinos/citologia , Janus Quinases/genética , Janus Quinases/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Fatores de Transcrição/metabolismo
4.
PLoS Genet ; 9(9): e1003835, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086162

RESUMO

The coordination of cell proliferation and differentiation is crucial for proper development. In particular, robust mechanisms exist to ensure that cells permanently exit the cell cycle upon terminal differentiation, and these include restraining the activities of both the E2F/DP transcription factor and Cyclin/Cdk kinases. However, the full complement of mechanisms necessary to restrain E2F/DP and Cyclin/Cdk activities in differentiating cells are not known. Here, we have performed a genetic screen in Drosophila melanogaster, designed to identify genes required for cell cycle exit. This screen utilized a PCNA-miniwhite(+) reporter that is highly E2F-responsive and results in a darker red eye color when crossed into genetic backgrounds that delay cell cycle exit. Mutation of Hsp83, the Drosophila homolog of mammalian Hsp90, results in increased E2F-dependent transcription and ectopic cell proliferation in pupal tissues at a time when neighboring wild-type cells are postmitotic. Further, these Hsp83 mutant cells have increased Cyclin/Cdk activity and accumulate proteins normally targeted for proteolysis by the anaphase-promoting complex/cyclosome (APC/C), suggesting that APC/C function is inhibited. Indeed, reducing the gene dosage of an inhibitor of Cdh1/Fzr, an activating subunit of the APC/C that is required for timely cell cycle exit, can genetically suppress the Hsp83 cell cycle exit phenotype. Based on these data, we propose that Cdh1/Fzr is a client protein of Hsp83. Our results reveal that Hsp83 plays a heretofore unappreciated role in promoting APC/C function during cell cycle exit and suggest a mechanism by which Hsp90 inhibition could promote genomic instability and carcinogenesis.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular/genética , Proliferação de Células , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição E2F/metabolismo , Proteínas de Choque Térmico/genética , Ciclossomo-Complexo Promotor de Anáfase/genética , Animais , Proteínas Cdh1/genética , Proteínas Cdh1/metabolismo , Proteínas de Ciclo Celular/genética , Drosophila melanogaster/genética , Fatores de Transcrição E2F/genética , Proteínas de Choque Térmico/metabolismo , Mitose/genética , Fatores de Transcrição , Complexos Ubiquitina-Proteína Ligase/genética
5.
Cell Res ; 23(9): 1133-46, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23896988

RESUMO

Intestinal stem cells (ISCs) in the Drosophila adult midgut are essential for maintaining tissue homeostasis, and their proliferation and differentiation speed up in order to meet the demand for replenishing the lost cells in response to injury. Several signaling pathways including JAK-STAT, EGFR and Hippo (Hpo) pathways have been implicated in damage-induced ISC proliferation, but the mechanisms that integrate these pathways have remained elusive. Here, we demonstrate that the Drosophila homolog of the oncoprotein Myc (dMyc) functions downstream of these signaling pathways to mediate their effects on ISC proliferation. dMyc expression in precursor cells is stimulated in response to tissue damage, and dMyc is essential for accelerated ISC proliferation and midgut regeneration. We show that tissue damage caused by dextran sulfate sodium feeding stimulates dMyc expression via the Hpo pathway, whereas bleomycin feeding activates dMyc through the JAK-STAT and EGFR pathways. We provide evidence that dMyc expression is transcriptionally upregulated by multiple signaling pathways, which is required for optimal ISC proliferation in response to tissue damage. We have also obtained evidence that tissue damage can upregulate dMyc expression post-transcriptionally. Finally, we show that a basal level of dMyc expression is required for ISC maintenance, proliferation and lineage differentiation during normal tissue homeostasis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Mucosa Intestinal/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Animais , Bleomicina/farmacologia , Diferenciação Celular , Proliferação de Células , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Sulfato de Dextrana/farmacologia , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/efeitos dos fármacos , Proteínas de Drosophila/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Intestinos/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Janus Quinases/genética , Janus Quinases/metabolismo , Proteínas Nucleares/efeitos dos fármacos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Receptores de Peptídeos de Invertebrados/genética , Receptores de Peptídeos de Invertebrados/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Transativadores/efeitos dos fármacos , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas de Sinalização YAP
6.
Mol Cell Biol ; 33(19): 3762-79, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23878397

RESUMO

Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptors are implicated in development and tumorigenesis and dual inhibitors like sunitinib are prescribed for cancer treatment. While mammalian VEGF and PDGF receptors are present in multiple isoforms and heterodimers, Drosophila encodes one ancestral PDGF/VEGF receptor, PVR. We identified PVR in an unbiased cell-based RNA interference (RNAi) screen of all Drosophila kinases and phosphatases for novel regulators of TORC1. PVR is essential to sustain target of rapamycin complex 1 (TORC1) and extracellular signal-regulated kinase (ERK) activity in cultured insect cells and for maximal stimulation by insulin. CG32406 (henceforth, PVRAP, for PVR adaptor protein), an Src homology 2 (SH2) domain-containing protein, binds PVR and is required for TORC1 activation. TORC1 activation by PVR involves Tsc1/Tsc2 and, in a cell-type-dependent manner, Lobe (ortholog of PRAS40). PVR is required for cell survival in vitro, and both PVR and TORC1 are necessary for hemocyte expansion in vivo. Constitutive PVR activation induces tumor-like structures that exhibit high TORC1 activity. Like its mammalian orthologs, PVR is inhibited by sunitinib, and sunitinib treatment phenocopies PVR loss in hemocytes. Sunitinib inhibits TORC1 in insect cells, and sunitinib-mediated TORC1 inhibition requires an intact Tsc1/Tsc2 complex. Sunitinib similarly inhibited TORC1 in human endothelial cells in a Tsc1/Tsc2-dependent manner. Our findings provide insight into the mechanism of action of PVR and may have implications for understanding sunitinib sensitivity and resistance in tumors.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Indóis/farmacologia , Complexos Multiproteicos/metabolismo , Pirróis/farmacologia , Receptores Proteína Tirosina Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sequência de Aminoácidos , Animais , Antineoplásicos/farmacologia , Western Blotting , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Hemócitos/citologia , Hemócitos/efeitos dos fármacos , Hemócitos/metabolismo , Humanos , Indóis/química , Indóis/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Mutação , Estrutura Terciária de Proteína , Pirróis/química , Pirróis/metabolismo , Interferência de RNA , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/genética , Homologia de Sequência de Aminoácidos , Sunitinibe , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
7.
Cell Stem Cell ; 8(1): 84-95, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21167805

RESUMO

Many tissues in higher animals undergo dynamic homeostatic growth, wherein damaged or aged cells are replaced by the progeny of resident stem cells. To maintain homeostasis, stem cells must respond to tissue needs. Here we show that in response to damage or stress in the intestinal (midgut) epithelium of adult Drosophila, multiple EGFR ligands and rhomboids (intramembrane proteases that activate some EGFR ligands) are induced, leading to the activation of EGFR signaling in intestinal stem cells (ISCs). Activation of EGFR signaling promotes ISC division and midgut epithelium regeneration, thereby maintaining tissue homeostasis. ISCs defective in EGFR signaling cannot grow or divide, are poorly maintained, and cannot support midgut epithelium regeneration after enteric infection by the bacterium Pseudomonas entomophila. Furthermore, ISC proliferation induced by Jak/Stat signaling is dependent upon EGFR signaling. Thus the EGFR/Ras/MAPK signaling pathway plays central, essential roles in ISC maintenance and the feedback system that mediates intestinal homeostasis.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Receptores ErbB/metabolismo , Mucosa Intestinal/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Receptores de Peptídeos de Invertebrados/metabolismo , Regeneração/fisiologia , Células-Tronco/metabolismo , Proteínas ras/metabolismo , Animais , Animais Endogâmicos , Proliferação de Células , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Homeostase , Mucosa Intestinal/enzimologia , Mucosa Intestinal/metabolismo , Janus Quinases/metabolismo , Células-Tronco/citologia , Células-Tronco/enzimologia
8.
Development ; 136(3): 483-93, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19141677

RESUMO

In holometabolous insects, the adult appendages and internal organs form anew from larval progenitor cells during metamorphosis. As described here, the adult Drosophila midgut, including intestinal stem cells (ISCs), develops from adult midgut progenitor cells (AMPs) that proliferate during larval development in two phases. Dividing AMPs first disperse, but later proliferate within distinct islands, forming large cell clusters that eventually fuse during metamorphosis to make the adult midgut epithelium. We find that signaling through the EGFR/RAS/MAPK pathway is necessary and limiting for AMP proliferation. Midgut visceral muscle produces a weak EGFR ligand, Vein, which is required for early AMP proliferation. Two stronger EGFR ligands, Spitz and Keren, are expressed by the AMPs themselves and provide an additional, autocrine mitogenic stimulus to the AMPs during late larval stages.


Assuntos
Proliferação de Células , Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Receptores ErbB/fisiologia , Mucosa Intestinal/citologia , Intestinos/citologia , Receptores de Peptídeos de Invertebrados/fisiologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/fisiologia , Animais , Linhagem da Célula/fisiologia , Proteínas de Drosophila/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Mucosa Intestinal/crescimento & desenvolvimento , Intestinos/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas de Membrana/metabolismo , Metamorfose Biológica , Neurregulinas/metabolismo , Ligação Proteica , Transdução de Sinais/fisiologia , Proteínas ras/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA