Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Nat Prod Bioprospect ; 14(1): 39, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954263

RESUMO

Alzheimer's disease (AD) is a complex neurodegenerative condition. 5α-epoxyalantolactone (5α-EAL), a eudesmane-type sesquiterpene isolated from the herb of Inula macrophylla, has various pharmacological effects. This work supposed to investigate the improved impact of 5α-EAL on cognitive impairment. 5α-EAL inhibited the generation of nitric oxide (NO) in BV-2 cells stimulated with lipopolysaccharide (LPS) with an EC50 of 6.2 µM. 5α-EAL significantly reduced the production of prostaglandin E2 (PGE2) and tumor necrosis factor-α (TNF-α), while also inhibiting the production of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) proteins. The ability of 5α-EAL to penetrate the blood-brain barrier (BBB) was confirmed via a parallel artificial membrane permeation assay. Scopolamine (SCOP)-induced AD mice model was employed to assess the improved impacts of 5α-EAL on cognitive impairment in vivo. After the mice were pretreated with 5α-EAL (10 and 30 mg/kg per day, i.p.) for 21 days, the behavioral experiments indicated that the administration of the 5α-EAL could alleviate the cognitive and memory impairments. 5α-EAL significantly reduced the AChE activity in the brain of SCOP-induced AD mice. In summary, these findings highlight the beneficial effects of the natural product 5α-EAL as a potential bioactive compound for attenuating cognitive deficits in AD due to its pharmacological profile.

2.
Eur Radiol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981889

RESUMO

OBJECTIVES: This study examines the effectiveness of dual-energy CT (DECT) delayed-phase extracellular volume (ECV) fraction in predicting tumor regression grade (TRG) in far-advanced gastric cancer (FAGC) patients receiving preoperative immuno-chemotherapy. MATERIALS AND METHODS: A retrospective analysis was performed on far-advanced gastric adenocarcinoma patients treated with preoperative immuno-chemotherapy at our institution from August 2019 to March 2023. Patients were categorized based on their TRG into pathological complete response (pCR) and non-pCR groups. ECV was determined using the delayed-phase iodine maps. In addition, tumor iodine densities and standardized iodine ratios were meticulously analyzed using the triple-phase enhanced iodine maps. Univariate analysis with five-fold cross-validation and Spearman correlation determined DECT parameters and clinical indicators association with pCR. The predictive accuracy of these parameters for pCR was evaluated using a weighted logistic regression model with five-fold cross-validation. RESULTS: Of the 88 patients enrolled (mean age 60.8 ± 11.1 years, 63 males), 21 (23.9%) achieved pCR. Univariate analysis indicated ECV's significant role in differentiating between pCR and non-pCR groups (average p value = 0.021). In the logistic regression model, ECV independently predicted pCR with an average odds ratio of 0.911 (95% confidence interval, 0.798-0.994). The model, incorporating ECV, tumor area, and IDAV (the relative change rate of iodine density from venous phase to arterial phase), showed an average area under curves (AUCs) of 0.780 (0.770-0.791) and 0.766 (0.731-0.800) for the training and validation sets, respectively, in predicting pCR. CONCLUSION: DECT-derived ECV fraction is a valuable predictor of TRG in FAGC patients undergoing preoperative immuno-chemotherapy. CLINICAL RELEVANCE STATEMENT: This study demonstrates that DECT-derived extracellular volume fraction is a reliable predictor for pathological complete response in far-advanced gastric cancer patients receiving preoperative immuno-chemotherapy, offering a noninvasive tool for identifying potential treatment beneficiaries.

3.
Eur J Med Chem ; 275: 116562, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38865742

RESUMO

As a molecular chaperone, heat shock protein 90 (HSP90) plays important roles in the folding, stabilization, activation, and degradation of over 500 client proteins, and is extensively involved in cell signaling, proliferation, and survival. Thus, it has emerged as an important target in a variety of diseases, including cancer, neurodegenerative diseases, and viral infections. Therefore, targeted inhibition of HSP90 provides a valuable and promising therapeutic strategy for the treatment of HSP90-related diseases. This review aims to systematically summarize the progress of research on HSP90 inhibitors in the last five years, focusing on their structural features, design strategies, and biological activities. It will refer to the natural products and their derivatives (including novobiocin derivatives, deguelin derivatives, quinone derivatives, and terpenoid derivatives), and to synthetic small molecules (including resorcinol derivatives, pyrazoles derivatives, triazole derivatives, pyrimidine derivatives, benzamide derivatives, benzothiazole derivatives, and benzofuran derivatives). In addition, the major HSP90 small-molecule inhibitors that have moved into clinical trials to date are also presented here.


Assuntos
Proteínas de Choque Térmico HSP90 , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Estrutura Molecular , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/síntese química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Relação Estrutura-Atividade
4.
Int J Biochem Cell Biol ; 173: 106610, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38879152

RESUMO

Colorectal cancer (CRC) is the third most common type of cancer in the world. It is characterized by complex crosstalk between various signaling pathways, as a result of which it is highly challenging to identify optimal therapeutic targets and design treatment strategies. In this study, we tested the effect of 700 compounds on the CRC cell line HT-29 by using the sulforhodamine B assay and screened out 17 compounds that exhibited high toxicity (indicated by an inhibition rate of ≥75 % when applied at a concentration of 10 µM) against the HT-29 cell line. Next, we investigated the mechanisms underlying the effects of these 17 highly toxic compounds. The results of ferroptosis analysis and electron microscopy showed that compounds 575 and 578 were able to significantly reverse RSL3-induced increase in ferroptosis, while compound 580 had a less pronounced ferroptosis-regulating effect. In subsequent experiments, western blotting showed that compounds 575, 578, and 580, which belong to a class of meroterpene-like compounds that affect ferroptosis, do not induce autophagy or apoptosis in the CRC cell line. Instead, Fe2+ chelation experiments showed that these three compounds can serve as iron chelators by chelating Fe2+ at a 1:1 (chelator: Fe2+) ratio. Specifically, the aldehyde and hydroxyl groups of the benzene ring in these compounds may chelate Fe2+, thus reducing Fe2+ levels in cells and inhibiting ferroptosis. These results indicate that these novel meroterpene-like compounds are potential therapeutic small-molecule candidates for targeting ferroptosis in tumors.


Assuntos
Ferroptose , Quelantes de Ferro , Ferro , Ferroptose/efeitos dos fármacos , Humanos , Quelantes de Ferro/farmacologia , Quelantes de Ferro/química , Células HT29 , Ferro/metabolismo , Terpenos/farmacologia , Terpenos/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Apoptose/efeitos dos fármacos
5.
Drug Resist Updat ; 75: 101098, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833804

RESUMO

Breakthroughs in actual clinical applications have begun through vaccine-based cancer immunotherapy, which uses the body's immune system, both humoral and cellular, to attack malignant cells and fight diseases. However, conventional vaccine approaches still face multiple challenges eliciting effective antigen-specific immune responses, resulting in immunotherapy resistance. In recent years, biomimetic nanovaccines have emerged as a promising alternative to conventional vaccine approaches by incorporating the natural structure of various biological entities, such as cells, viruses, and bacteria. Biomimetic nanovaccines offer the benefit of targeted antigen-presenting cell (APC) delivery, improved antigen/adjuvant loading, and biocompatibility, thereby improving the sensitivity of immunotherapy. This review presents a comprehensive overview of several kinds of biomimetic nanovaccines in anticancer immune response, including cell membrane-coated nanovaccines, self-assembling protein-based nanovaccines, extracellular vesicle-based nanovaccines, natural ligand-modified nanovaccines, artificial antigen-presenting cells-based nanovaccines and liposome-based nanovaccines. We also discuss the perspectives and challenges associated with the clinical translation of emerging biomimetic nanovaccine platforms for sensitizing cancer cells to immunotherapy.


Assuntos
Células Apresentadoras de Antígenos , Vacinas Anticâncer , Imunoterapia , Nanopartículas , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia/métodos , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Nanopartículas/administração & dosagem , Células Apresentadoras de Antígenos/imunologia , Biomimética/métodos , Materiais Biomiméticos/administração & dosagem , Animais , Lipossomos , Nanovacinas
6.
J Chem Phys ; 160(20)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38775745

RESUMO

The understanding on the growth mechanism of complex gold nanostructures both experimentally and theoretically can guide their design and fabrication toward various applications. In this work, we report a cysteine-directed overgrowth of penta-twinned nanorod seeds into jagged gold bipyramids with discontinuous stepped {hhk} facets. By monitoring the growth process, we find that {hhk} facets with large k/h values (∼7) are formed first at two ends of the nanorods, followed by the protrusion of the middle section exposing {hhk} facets with smaller indices (k/h ∼ 2-3). Molecular dynamics simulations indicate that the strong adsorption of cysteine molecules on {110} facets is likely responsible for the formation of stepped {hhk} facets, and the stronger adsorption of cysteine molecules on {hhk} facets with smaller k/h compared to that on {hhk} facets with larger k/h is a possible cause of the discontinuity of {hhk} facets at the middle of gold bipyramids. The obtained jagged gold bipyramids display large field enhancement under illumination due to their sharp nanostructures, demonstrating their application potentials in surface-enhanced spectroscopy and catalysis.

7.
Nat Commun ; 15(1): 3445, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658533

RESUMO

Mutations in isocitrate dehydrogenases (IDH) are oncogenic events due to the generation of oncogenic metabolite 2-hydroxyglutarate. However, the role of wild-type IDH in cancer development remains elusive. Here we show that wild-type IDH2 is highly expressed in triple negative breast cancer (TNBC) cells and promotes their proliferation in vitro and tumor growth in vivo. Genetic silencing or pharmacological inhibition of wt-IDH2 causes a significant increase in α-ketoglutarate (α-KG), indicating a suppression of reductive tricarboxylic acid (TCA) cycle. The aberrant accumulation of α-KG due to IDH2 abrogation inhibits mitochondrial ATP synthesis and promotes HIF-1α degradation, leading to suppression of glycolysis. Such metabolic double-hit results in ATP depletion and suppression of tumor growth, and renders TNBC cells more sensitive to doxorubicin treatment. Our study reveals a metabolic property of TNBC cells with active utilization of glutamine via reductive TCA metabolism, and suggests that wild-type IDH2 plays an important role in this metabolic process and could be a potential therapeutic target for TNBC.


Assuntos
Proliferação de Células , Ciclo do Ácido Cítrico , Isocitrato Desidrogenase , Ácidos Cetoglutáricos , Neoplasias de Mama Triplo Negativas , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Feminino , Animais , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ácidos Cetoglutáricos/metabolismo , Camundongos , Proliferação de Células/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Glutamina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Mutação
8.
BMC Med Genomics ; 17(1): 105, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664735

RESUMO

BACKGROUND: Research on the fatty acid metabolism related gene SLC27A2 is currently mainly focused on solid tumors, and its mechanism of action in hematological tumors has not been reported. METHOD: This study aims to explore the pathological and immune mechanisms of the fatty acid metabolism related gene SLC27A2 in hematological tumors and verify its functional role in hematological tumors through cell experiments to improve treatment decisions and clinical outcomes of hematological tumors. RESULT: This study identified the fatty acid metabolism related gene SLC27A2 as a common differentially expressed gene between DLBCL and AML. Immune microenvironment analysis showed that SLC27A2 was significantly positively correlated with T cell CD4 + , T cell CD8 + , endothelial cells, macrophages, and NK cells in DLBCL. In AML, there is a significant negative correlation between SLC27A2 and B cells, T cell CD8 + , and macrophages. SLC27A2 participates in the immune process of hematological tumors through T cell CD8 + and macrophages. The GESA results indicate that high expression of SLC27A2 is mainly involved in the fatty acid pathway, immune pathway, and cell cycle pathway of DLBCL. The low expression of SLC27A2 is mainly involved in the immune pathway of AML. Therefore, SLC27A2 is mainly involved in the pathological mechanisms of hematological tumors through immune pathways, and cell experiments have also confirmed that SLC27A2 is involved in the regulation of DLBCL cells. CONCLUSION: In summary, our research results comprehensively report for the first time the mechanism of action of SLC27A2 in the immune microenvironment of DLBCL and AML, and for the first time verify the cycle and apoptotic effects of the fatty acid related gene SLC27A2 in DLBCL cells through cell experiments. Research can help improve the treatment of AML and DLBCL patients.


Assuntos
Ciclo Celular , Linfoma Difuso de Grandes Células B , Microambiente Tumoral , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/patologia , Microambiente Tumoral/imunologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/patologia , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Ácidos Graxos/metabolismo
9.
PLoS One ; 19(4): e0297849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625951

RESUMO

More and more evidence shows that abnormal lipid metabolism leads to immune system dysfunction in AMD and promotes the occurrence of AMD by changing the homeostasis of ocular inflammation. However, the molecular mechanism underlying the effect of lipid metabolism on the phenotype and function of macrophages is still unclear, and the mechanism of association between AMD and cancer and COVID-19 has not been reported. The purpose of this study is to explore the interaction between lipid metabolism related genes, ferroptosis related genes and immunity in AMD, find out the key genes that affect the ferroptosis of AMD through lipid metabolism pathway and the molecular mechanism that mediates the action of macrophages, and find out the possible mechanism of lipid metabolism and potential co-therapeutic targets between AMD and cancer and COVID-19, so as to improve treatment decision-making and clinical results. For the first time, we have comprehensively analyzed the fatty acid molecule related genes, ferroptosis related genes and immune microenvironment of AMD patients, and determined that mast cells and M1 macrophages are the main causes of AMD inflammation, and found that SCD is the core gene in AMD that inhibits ferroptosis through lipid metabolism pathway, and verified the difference in the expression of SCD in AMD in a separate external data set. Based on the analysis of the mechanism of action of the SCD gene, we found for the first time that Has-miR-199a-3p/RELA/SCD is the core axis of action of lipid metabolism pathway to inhibit the ferroptosis of AMD. By inhibiting the immune checkpoint, we can enhance the immune cell activity of AMD and lead to the transformation of macrophages from M2 to M1, thereby promoting the inflammation and pathological angiogenesis of AMD. At the same time, we found that ACOX2 and PECR, as genes for fatty acid metabolism, may regulate the expression of SCD during the occurrence and development of COVID-19, thus affecting the occurrence and development of AMD. We found that FASD1 may be a key gene for the joint action of AMD and COVID-19, and SCD regulates the immune infiltration of macrophages in glioma and germ line tumors. In conclusion, our results can provide theoretical basis for the pathogenesis of AMD, help guide the treatment of AMD patients and their potentially related diseases and help to design effective drug targets.


Assuntos
COVID-19 , MicroRNAs , Neoplasias , Humanos , MicroRNAs/metabolismo , Metabolismo dos Lipídeos/genética , Angiogênese , Macrófagos/metabolismo , Inflamação/patologia , Ácidos Graxos/metabolismo , Neoplasias/patologia , COVID-19/patologia , Microambiente Tumoral , Fator de Transcrição RelA/metabolismo
10.
Eur J Med Chem ; 270: 116387, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593589

RESUMO

Activating apoptosis has long been viewed as an anti-cancer process, but recently increasing evidence has accumulated that induction of ferroptosis has emerged as a promising strategy for cancer therapeutics. Glutathione peroxidase 4 (GPX4) is one of the pivotal factors regulating ferroptosis that targeted inhibition or degradation of GPX4 could effectively trigger ferroptosis. In this study, a series of ML162-quinone conjugates were constructed by using pharmacophore hybridization and bioisosterism strategies, with the aim of obtaining more active anticancer agents via the ferroptosis and apoptosis dual cell death processes. Of these compounds, GIC-20 was identified as the most active one that exhibited promising anticancer activity both in vitro and in vivo via ferroptosis and apoptosis dual-targeting processes, without obvious toxicity compared with ML162. On one hand, GIC-20 could trigger ferroptosis in cells by inducing intracellular lipid peroxide and ROS accumulation, and destroying mitochondrial structure. In addition to GPX4 inhibition, GIC-20 can also trigger ferroptosis via proteasomal-mediated degradation of GPX4, suggesting GIC-20 may function as a molecule glue degrader. On the other hand, GIC-20 can also induce apoptosis via upregulating the level of apoptotic protein Bax and downregulating the level of anti-apoptotic protein Bcl-2 in HT1080 cells. Furthermore, GIC-20 also enhanced the sensitivity of resistant MIA-PaCa-2-AMG510R cells to AMG510, suggesting the great potential of GIC-20 in overcoming the acquired resistance of KRASG12C inhibitors. Overall, GIC-20 represents a novel dual ferroptosis/apoptosis inducer warranting further development for cancer therapeutics and overcoming drug resistance.


Assuntos
Compostos de Anilina , Ferroptose , Naftoquinonas , Neoplasias , Tiofenos , Humanos , Naftoquinonas/farmacologia , Apoptose
11.
Biochem Pharmacol ; 222: 116120, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461905

RESUMO

The role of the Immunoglobulin Superfamily (IgSF) as adhesion molecules in orchestrating inflammation is pivotal, yet its specific involvement in gastric cancer (GC) remains unknown. We analyzed IgSF components and discerned conspicuously elevated VCAM1 expression in GC, correlating with a poor prognosis. Remarkably, VCAM1 enhances GC cell proliferation and migration by activating AKT-mTOR signaling. Moreover, lactate in the tumor microenvironment (TME) promotes dynamic lactylation of H3K18 (H3K18la), leading to transcriptional activation of VCAM1 in GC cells. Furthermore, VCAM1 actively mediates intercellular communication in the TME. AKT-mTOR-mediated CXCL1 expression is increased by VCAM1, facilitating the recruitment of human GC-derived mesenchymal stem cells (hGC-MSCs), thereby fostering immunesuppression and accelerating cancer progression. In summary, H3K18 lactylation upregulated VCAM1 transcription, which activated AKT-mTOR signaling, and promoted tumor cell proliferation, EMT Transition and tumor metastasis. VCAM1 upregulated CXCL1 expression by AKT-mTOR pathway, so as to facilitate hGC-MSCs and M2 macrophage recruitment and infiltration. These findings provide novel therapeutic targets for GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Movimento Celular , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Transição Epitelial-Mesenquimal , Microambiente Tumoral , Quimiocina CXCL1/metabolismo
12.
Head Neck ; 46(6): E61-E66, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38469981

RESUMO

BACKGROUND: Extrathyroid implantation or dissemination of thyroid tissue secondary to a thyroid procedure is rare. Most of these belonged to thyroid carcinoma with metastatic potential and uncommon for benign pathologies. METHODS: We report the case of a 31-year-old female who was identified to have multiple subcutaneous implantation of thyroid tissue 5 years after transoral endoscopic thyroidectomy vestibular approach. A comprehensive literature search on implantation of thyroid tissue secondary to thyroid procedures was performed. RESULTS: Accidental tearing of the capsule during previous surgery may lead to the subcutaneous implantation. Through literature review, a total 29 articles with 47 patients were identified. 33.3% were benign lesions, and implantation was mostly secondary to fine needle aspiration biopsy (46.5%). CONCLUSIONS: Subcutaneous or port site implantation after endoscopic thyroid surgery may occur in benign thyroid pathologies and therefore, oncologic principles must be strictly followed during surgery regardless of its histopathological nature.


Assuntos
Bócio Nodular , Tireoidectomia , Humanos , Feminino , Tireoidectomia/métodos , Tireoidectomia/efeitos adversos , Adulto , Bócio Nodular/cirurgia , Bócio Nodular/patologia , Cirurgia Endoscópica por Orifício Natural/métodos , Cirurgia Endoscópica por Orifício Natural/efeitos adversos , Endoscopia/métodos
13.
J Org Chem ; 89(7): 5029-5037, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38531374

RESUMO

Inubritantrimer A (1), a trace trimerized sesquiterpenoid [4 + 2] adduct featuring an unusual exo-exo type spiro-polycyclic scaffold, together with three new endo-exo [4 + 2] adducts, inubritantrimers B-D (2-4), were discovered from the flowers of Inula britannica. Their structures were elucidated using 1D/2D NMR, X-ray diffraction, and ECD approaches. 1 is characterized as a novel exo-exo trimer, synthesized biogenetically from three sesquiterpenoid monomers, featuring a unique linkage of C-11/C-1', C-13/C-3' and C-13'/C-3″, C-11'/C-1″ through a two-step exo [4 + 2] cycloaddition process. Compounds 1-4 exhibited modest cytotoxicity against breast cancer cells with IC50 values in the range of 5.84-12.01 µM.


Assuntos
Inula , Sesquiterpenos , Inula/química , Estrutura Molecular , Espectroscopia de Ressonância Magnética , Sesquiterpenos/farmacologia , Sesquiterpenos/química
14.
Adv Sci (Weinh) ; 11(18): e2307899, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460164

RESUMO

Gastric cancer (GC) presents a formidable global health challenge, and conventional therapies face efficacy limitations. Ubiquitin-specific protease 7 (USP7) plays pivotal roles in GC development, immune response, and chemo-resistance, making it a promising target. Various USP7 inhibitors have shown selectivity and efficacy in preclinical studies. However, the mechanistic role of USP7 has not been fully elucidated, and currently, no USP7 inhibitors have been approved for clinical use. In this study, DHPO is identified as a potent USP7 inhibitor for GC treatment through in silico screening. DHPO demonstrates significant anti-tumor activity in vitro, inhibiting cell viability and clonogenic ability, and preventing tumor migration and invasion. In vivo studies using orthotopic gastric tumor mouse models validate DHPO's efficacy in suppressing tumor growth and metastasis without significant toxicity. Mechanistically, DHPO inhibition triggers ferroptosis, evidenced by mitochondrial alterations, lipid Reactive Oxygen Species (ROS), Malondialdehyde (MDA) accumulation, and iron overload. Further investigations unveil USP7's regulation of Stearoyl-CoA Desaturase (SCD) through deubiquitination, linking USP7 inhibition to SCD degradation and ferroptosis induction. Overall, this study identifies USP7 as a key player in ferroptosis of GC, elucidates DHPO's inhibitory mechanisms, and highlights its potential for GC treatment by inducing ferroptosis through SCD regulation.


Assuntos
Ferroptose , Estearoil-CoA Dessaturase , Neoplasias Gástricas , Peptidase 7 Específica de Ubiquitina , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Animais , Camundongos , Humanos , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças
15.
Front Microbiol ; 15: 1361550, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419626

RESUMO

Aspergillus fungi are renowned for producing a diverse range of natural products with promising biological activities. These include lovastatin, itaconic acid, terrin, and geodin, known for their cholesterol-regulating, anti-inflammatory, antitumor, and antibiotic properties. In our current study, we isolated three dimeric nitrophenyl trans-epoxyamides (1-3), along with fifteen known compounds (4-18), from the culture of Aspergillus terreus MCCC M28183, a deep-sea-derived fungus. The structures of compounds 1-3 were elucidated using a combination of NMR, MS, NMR calculation, and ECD calculation. Compound 1 exhibited moderate inhibitory activity against human gastric cancer cells MKN28, while compound 7 showed similar activity against MGC803 cells, with both showing IC50 values below 10 µM. Furthermore, compound 16 exhibited moderate potency against Vibrio parahaemolyticus ATCC 17802, with a minimum inhibitory concentration (MIC) value of 7.8 µg/mL. This promising research suggests potential avenues for developing new pharmaceuticals, particularly in targeting specific cancer cell lines and combating bacterial infections, leveraging the unique properties of these Aspergillus-derived compounds.

16.
RSC Med Chem ; 15(2): 506-518, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38389882

RESUMO

The emergence of multidrug resistance (MDR) in malignant tumors is one of the leading threats encountered currently by many chemotherapeutic agents. A proposed strategy to overcome MDR is to disable the efflux function of P-glycoprotein (P-gp/ABCB1), a critical member of the ABC transporter family that significantly increases the efflux of various anticancer drugs from tumor cells. In this study, structural modification of a third-generation P-gp inhibitor WK-X-34 based on bioisosteric and fragment-growing strategies led to the discovery of the adamantane derivative PID-9, which exhibited the best MDR reversal activity (IC50 = 0.1338 µM, RF = 78.6) in this series, exceeding those of the reported P-gp inhibitors verapamil and WK-X-34. In addition, compared with WK-X-34, PID-9 showed decreased toxicity to cells. Furthermore, the mechanism studies revealed that the reversal activity of adamantane derivatives PID-5, PID-7, and PID-9 stemmed from the inhibition of P-gp efflux. These results indicated that compound PID-9 is the most effective P-gp inhibitor among them with low toxicity and high MDR reversal activity, which provided a fundamental structural reference for further discovery of novel, effective, and non-toxic P-gp inhibitors.

17.
Dalton Trans ; 53(9): 4342, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38353276

RESUMO

Correction for 'The {Cu2I2} cluster bearing metal organic frameworks: crystal structures and fluorescence detecting performances towards cysteine and explosive molecules' by Jiang Jiang et al., Dalton Trans., 2024, 53, 706-714, https://doi.org/10.1039/d3dt03363e.

18.
J Orthop Surg Res ; 19(1): 139, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351078

RESUMO

BACKGROUND: Insufficient interfragmentary compression force (IFCF) frequently leads to unstable fixation of osteoporotic lateral tibial plateau fractures (OLTPFs). A combined cancellous lag screw (CCLS) enhances IFCF; however, its effect on OLTPF fixation stability remains unclear. Therefore, we investigated the effect of CCLS on OLTPF stability using locking plate fixation (LPF). MATERIALS AND METHODS: Twelve synthetic osteoporotic tibial bones were used to simulate OLTPFs, which were fixed using LPF, LPF-AO cancellous lag screws (LPF-AOCLS), and LPF-CCLS. Subsequently, 10,000 cyclic loadings from 30 to 400 N were performed. The initial axial stiffness (IAS), maximal axial micromotion of the lateral fragment (MAM-LF) measured every 1000 cycles, and failure load after 10,000 cycles were tested. The same three fixations for OLTPF were simulated using finite element analysis (FEA). IFCFs of 0, 225, and 300 N were applied to the LPF, LPF-AOCLS, and LPF-CCLS, respectively, with a 1000-N axial compressive force. The MAM-LF, peak von Mises stress (VMS), peak equivalent elastic strain of the lateral fragment (EES-LF), and nodes of EES-LF > 2% (considered bone destruction) were calculated. RESULTS: Biomechanical tests revealed the LPF-AOCLS and LPF-CCLS groups to be superior to the LPF group in terms of the IAS, MAM-LF, and failure load (all p < 0.05). FEA revealed that the MAM-LF, peak VMS, peak EES-LF, and nodes with EES-LF > 2% in the LPF were higher than those in the LPF-AOCLS and LPF-CCLS. CONCLUSION: IFCF was shown to enhance the stability of OLTPFs using LPF. Considering overscrewing, CCLS is preferably recommended, although there were no significant differences between CCLS and AOCLS.


Assuntos
Fixação Interna de Fraturas , Fraturas do Planalto Tibial , Humanos , Parafusos Ósseos , Placas Ósseas , Fenômenos Biomecânicos
19.
Biomark Res ; 12(1): 2, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38185685

RESUMO

The cGAS-STING signaling pathway has emerged as a critical mediator of innate immune responses, playing a crucial role in improving antitumor immunity through immune effector responses. Targeting the cGAS-STING pathway holds promise for overcoming immunosuppressive tumor microenvironments (TME) and promoting effective tumor elimination. However, systemic administration of current STING agonists faces challenges related to low bioavailability and potential adverse effects, thus limiting their clinical applicability. Recently, nanotechnology-based strategies have been developed to modulate TMEs for robust immunotherapeutic responses. The encapsulation and delivery of STING agonists within nanoparticles (STING-NPs) present an attractive avenue for antitumor immunotherapy. This review explores a range of nanoparticles designed to encapsulate STING agonists, highlighting their benefits, including favorable biocompatibility, improved tumor penetration, and efficient intracellular delivery of STING agonists. The review also summarizes the immunomodulatory impacts of STING-NPs on the TME, including enhanced secretion of pro-inflammatory cytokines and chemokines, dendritic cell activation, cytotoxic T cell priming, macrophage re-education, and vasculature normalization. Furthermore, the review offers insights into co-delivered nanoplatforms involving STING agonists alongside antitumor agents such as chemotherapeutic compounds, immune checkpoint inhibitors, antigen peptides, and other immune adjuvants. These platforms demonstrate remarkable versatility in inducing immunogenic responses within the TME, ultimately amplifying the potential for antitumor immunotherapy.

20.
J Health Psychol ; 29(3): 213-224, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37688375

RESUMO

Previous studies have indicated that cancer patients may have a lower level of subjective well-being (SWB); nevertheless, the underlying factors for this phenomenon remain insufficiently investigated. Based on the characteristics of Chinese breast cancer patients and the unique culture, this study explored the independent contributions of death anxiety, self-esteem, and social support to SWB from the protective and risk perspectives. A cross-sectional survey recruited 514 females with breast cancer and collected participants' demographic and the above variables. The results found that death anxiety independently predicted SWB in a negative direction (ß = -0.36, p < 0.001). In addition, self-esteem (ß = 0.38, p < 0.001) and social support (ß = 0.14, p < 0.001) also had the unique positive effects on SWB. These findings offer new insights into strengthening breast cancer patients' SWB, for instance, using relevant interventions to reduce death anxiety and improve self-esteem and social support.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Estudos Transversais , Apoio Social , Ansiedade , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA