RESUMO
Accumulated evidence emerges that dynamic changes in human gut microbiota and microbial metabolites can alter the ecological balance of symbiotic hosts. The gut microbiota plays a role in various diseases through different mechanisms. More and more attention has been paid to the effects that human microbiota extends beyond the gut. This review summarized the current understanding of the roles that gut microbiota plays in hematopoietic regulation and the occurrence and development of benign and malignant hematologic diseases. The progress of the application of microbiota in treatment was discussed in order to provide new insights into clinical diagnosis and treatment in the future.
RESUMO
Acute cerebral infarction (ACI) is a lethal disease whose early diagnosis is critical for treatment. microRNA (miR)-19a targets CC chemokine ligand 20 (CCL20) in myocardial infarction. We investigated the expression patterns of serum miR-19a and CCL20 of ACI patients and assessed their clinical values. Serum samples of 50 healthy subjects and110 ACI patients were collected. Serum levels of miR-19a, CCL20 mRNA, and biochemical indexes were assessed. miR-19a downstream target gene and the binding relationship between miR-19a and CCL20 were predicted and verified. miR-19a and CCL20 mRNA were subjected to correlation and diagnostic efficiency analysis. miR-19a was poorly expressed in the serum of ACI patients, especially in patients with unstable plaque and large infarction. tumor necrosis factor-α, low-density lipoprotein, and platelet/lymphocyte ratio negatively correlated with serum miR-19a level and positively correlated with CCL20. Dual-luciferase assay revealed that miR-19a could negatively regulate CCL20 expression. CCL20 was highly expressed in the serum of ACI patients. The area under receiver-operating characteristic curve of miR-19a combined with CCL20 was 0.9741 (98.00% specificity, 90.91% sensitivity), higher than their single diagnosis. Collectively, miR-19a had high diagnostic value for ACI and could target to restrain CCL20. The combination of miR-19a and CCL20 improved diagnostic value for ACI.
RESUMO
Leukemia is a kind of hematological malignancy originating from bone marrow, which provides essential signals for initiation, progression, and recurrence of leukemia. However, how to specifically deliver drugs to the bone marrow remains elusive. Here, we develop biomimetic vesicles by infusing hematopoietic stem and progenitor cell (HSPC) membrane with liposomes (HSPC liposomes), which migrate to the bone marrow of leukemic mice via hyaluronic acid-CD44 axis. Moreover, the biomimetic vesicles exhibit superior binding affinity to leukemia cells through intercellular cell adhesion molecule-1 (ICAM-1)/integrin ß2 (ITGB2) interaction. Further experiments validate that the vesicles carrying chemotherapy drug cytarabine (Ara-C@HSPC-Lipo) markedly inhibit proliferation, induce apoptosis and differentiation of leukemia cells, and decrease number of leukemia stem cells. Mechanically, RNA-seq reveals that Ara-C@HSPC-Lipo treatment induces apoptosis and differentiation and inhibits the oncogenic pathways. Finally, we verify that HSPC liposomes are safe in mice. This study provides a method for targeting bone marrow and treating leukemia.
Assuntos
Apoptose , Medula Óssea , Citarabina , Sistemas de Liberação de Medicamentos , Células-Tronco Hematopoéticas , Leucemia , Lipossomos , Animais , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Citarabina/farmacologia , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Medula Óssea/metabolismo , Apoptose/efeitos dos fármacos , Leucemia/tratamento farmacológico , Leucemia/patologia , Humanos , Diferenciação Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Antígenos CD18/metabolismo , Proliferação de Células/efeitos dos fármacos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismoRESUMO
OBJECTIVE: Severe hand electrical injuries often occur in functional areas such as joints; the repair requires attention to both appearance and function due to the visibility of the hand. This study aimed to present the clinical experience of successfully repairing hand electrical injuries using improved forearm venous flaps. METHODS: From 2020 to 2022, 15 cases of severe hand electrical injuries were diagnosed, including 10 males and 5 females. Among them, 6 cases were repaired in the first web space, 4 in the thumb, 3 in the index finger, 2 in the middle finger, 2 in the ring finger, and 2 in the little finger. The size of venous flaps ranged from 2.0 cm × 1.8 cm to 12 cm × 4.0 cm. All patients underwent repair using improved forearm venous flaps. The follow-up period ranged from 5 to 8 months. RESULTS: All flaps survived without serious complications. All patients were satisfied with the postoperative aesthetics and function of their hands. CONCLUSION: The improved forearm venous flap is a simple and reliable method for repairing hand electrical injuries.
Assuntos
Traumatismos por Eletricidade , Antebraço , Traumatismos da Mão , Retalhos Cirúrgicos , Humanos , Masculino , Feminino , Estudos Retrospectivos , Adulto , Antebraço/cirurgia , Antebraço/irrigação sanguínea , Traumatismos da Mão/cirurgia , Retalhos Cirúrgicos/irrigação sanguínea , Retalhos Cirúrgicos/transplante , Traumatismos por Eletricidade/cirurgia , Pessoa de Meia-Idade , Procedimentos de Cirurgia Plástica/métodos , Adulto Jovem , Adolescente , Veias/cirurgia , Veias/lesões , Veias/transplante , Resultado do TratamentoRESUMO
Fat mass and obesity-associated protein (FTO) is an N6-methyladenosine (m6A) demethylase and plays critical oncogenic roles in multiple cancers. Here we show that FTO is an effective target in hepatocellular carcinoma (HCC). FTO is highly expressed in patients with HCC. Genetic depletion of Fto dramatically attenuated HCC progression in mice. Pharmacological inhibition of FTO by FB23/FB23-2 markedly suppressed the proliferation and migration of HCC cell lines in vitro and inhibited HCC tumorigenicity in xeno-transplanted mice. Mechanistically, FB23-2 suppressed the expression of Erb-b2 receptor tyrosine kinase 3 (ERBB3) and human tubulin beta class Iva (TUBB4A) by increasing the m6A level in these mRNA transcripts. The decrease in ERBB3 expression resulted in the inhibition of Akt-mTOR signaling, which subsequently impaired the proliferation and survival of HCC cells. Moreover, FB23-2 disturbed the stability of the tubulin cytoskeleton, whereas overexpression of TUBB4A rescued the migration of HCC cells. Collectively, our study demonstrates that FTO plays a critical role in HCC by maintaining the proliferation and migration of cells and highlights the potential of FTO inhibitors for targeting HCC.
Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptor ErbB-3 , Tubulina (Proteína) , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/antagonistas & inibidores , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Humanos , Animais , Camundongos , Tubulina (Proteína)/metabolismo , Receptor ErbB-3/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/antagonistas & inibidores , Linhagem Celular Tumoral , Camundongos Nus , Masculino , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Movimento Celular/efeitos dos fármacosRESUMO
The involvement of Interferon-stimulated exonuclease gene 20 (ISG20) has been reported in renal clear cell carcinoma, hepatocellular carcinoma, and cervical cancer. However, its role in ovarian cancer chemotherapy remains unclear. In this study, we conducted a comparative analysis of TGF-ß1 and ISG20 in cisplatin-sensitive and cisplatin-resistant ovarian cancer cells and tissues using qRT-PCR and a tissue immunofluorescence analysis. We also investigated the impact of ISG20-targeted drugs (IFN-γ) and TGF-ß1 inhibitors on cisplatin response both in vivo and in vitro. Additionally, we assessed the effects of TGF-ß1 or ISG20 on the polarization of tumor-associated macrophages through flow cytometry and ELISA analysis. Our findings revealed that ISG20 expression was lower in cisplatin-resistant tissues compared to cisplatin-sensitive tissues; however, overexpression of ISG20 sensitized ovarian cancer to cisplatin treatment. Furthermore, activation of ISG20 expression with IFN-γ or TGF-ß1 inhibitors enhanced the sensitivity of ovarian cancer cells to cisplatin therapy. Notably, our results demonstrated that TGF-ß1 promoted M2-type macrophage polarization as well as PI3K/mTOR pathway activation by suppressing ISG20 expression both in vivo and in vitro. In conclusion, our study highlights the critical role played by ISG20 within the network underlying cisplatin resistance in ovarian cancer. Targeting ISG20 using IFN-γ or TGF-ß1 inhibitors may represent a promising therapeutic strategy for treating ovarian cancer.
Assuntos
Antineoplásicos , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Serina-Treonina Quinases TOR , Fator de Crescimento Transformador beta1 , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Feminino , Humanos , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/imunologia , Transdução de Sinais/efeitos dos fármacos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Camundongos , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Interferon gama/metabolismo , Camundongos Nus , Camundongos Endogâmicos BALB C , Peptídeos e Proteínas de Sinalização IntracelularRESUMO
Microplastics (MPs) are contaminants ubiquitously found in the global biosphere that enter the body through inhalation or ingestion, posing significant risks to human health. Recent studies emerge that MPs are present in the bone marrow and damage the hematopoietic system. However, it remains largely elusive about the specific mechanisms by which MPs affect hematopoietic stem cells (HSCs) and their clinical relevance in HSC transplantation (HSCT). Here, we established a long-term MPs intake mouse model and found that MPs caused severe damage to the hematopoietic system. Oral gavage administration of MPs or fecal transplantation of microbiota from MPs-treated mice markedly undermined the self-renewal and reconstitution capacities of HSCs. Mechanistically, MPs did not directly kill HSCs but disrupted gut structure and permeability, which eventually ameliorated the abundance of Rikenellaceae and hypoxanthine in the intestine and inactivated the HPRT-Wnt signaling in bone marrow HSCs. Furthermore, administration of Rikenellaceae or hypoxanthine in mice as well as treatment of WNT10A in the culture system substantially rescued the MPs-induced HSC defects. Finally, we validated in a cohort of human patients receiving allogenic HSCT from healthy donors, and revealed that the survival time of patients was negatively correlated with levels of MPs, while positively with the abundance of Rikenellaceae, and hypoxanthine in the HSC donors' feces and blood. Overall, our study unleashes the detrimental roles and mechanisms of MPs in HSCs, which provides potential strategies to prevent hematopoietic damage from MPs and serves as a fundamental critique for selecting suitable donors for HSCT in clinical practice.
RESUMO
BACKGROUND AND AIMS: Chronic hepatitis B (CHB) is caused by HBV infection and affects the lives of millions of people worldwide by causing liver inflammation, cirrhosis, and liver cancer. Interferon-alpha (IFN-α) therapy is a conventional immunotherapy that has been widely used in CHB treatment and achieved promising therapeutic outcomes by activating viral sensors and interferon-stimulated genes (ISGs) suppressed by HBV. However, the longitudinal landscape of immune cells of CHB patients and the effect of IFN-α on the immune system are not fully understood. APPROACH AND RESULTS: Here, we applied single-cell RNA sequencing (scRNA-seq) to delineate the transcriptomic landscape of peripheral immune cells in CHB patients before and after PegIFN-α therapy. Notably, we identified three CHB-specific cell subsets, pro-inflammatory (Pro-infla) CD14+ monocytes, Pro-infla CD16+ monocytes and IFNG+ CX3CR1- NK cells, which highly expressed proinflammatory genes and positively correlated with HBsAg. Furthermore, PegIFN-α treatment attenuated percentages of hyperactivated monocytes, increased ratios of long-lived naive/memory T cells and enhanced effector T cell cytotoxicity. Finally, PegIFN-α treatment switched the transcriptional profiles of entire immune cells from TNF-driven to IFN-α-driven pattern and enhanced innate antiviral response, including virus sensing and antigen presentation. CONCLUSIONS: Collectively, our study expands the understanding of the pathological characteristics of CHB and the immunoregulatory roles of PegIFN-α, which provides a new powerful reference for the clinical diagnosis and treatment of CHB.
Assuntos
Hepatite B Crônica , Humanos , Antivirais , Interferon-alfa , Transcriptoma , Análise de Sequência de RNA , Vírus da Hepatite B , Antígenos de Superfície da Hepatite B , Antígenos E da Hepatite B , DNA ViralRESUMO
ABSTRACT: The purpose of this study was to introduce a modified suture technique and to compare its effects on skin scar formation with 2 traditional suture methods: simple interrupted suture (SIS) and vertical mattress suture (VMS). Three groups of healthy adult female Sprague-Dawley rats were selected (6 replicates in each group), and the full-thickness skin of 5 cm × 0.2 cm was cut off on the back of the rats after anesthesia. The wounds were then sutured using 1 of the 3 methods for each group: SIS, VMS, and a newly introduced modified vertical mattress suture (M-VMS) technique with the needle reinsertion at the exit point. A traction device was installed on the back of the rats to achieve high tension wounds. The tensile distance was increased by 1 mm every day for 20 days. After 20 days of healing, the hematoxylin-eosin staining method was used for observation of scar morphology. The collagen production rate was measured by Masson staining, and the type I collagen and type III collagen were detected by the immunofluorescence method. Immunohistochemical staining was used to detect the expression of myofibroblast marker α-smooth muscle actin, and real-time quantitative polymerase chain reaction and Western blot techniques were used to detect the expressions of transforming growth factors TGFß1, TGFß2, and TGFß3 to understand the mechanisms of scar formation. Results showed that the quantity and density of collagen fibers were both lower in the M-VMS group than in the other 2 groups. Immunofluorescence results showed that type I collagen was significantly lower, whereas type III collagen was significantly higher in the M-VMS group than in the other 2 groups. The expressions of α-smooth muscle actin and TGFß1 both were lower in the M-VMS group than in the other 2 groups. The expression of TGFß2 and TGFß3 had no obvious difference among the 3 groups. For wounds under high tension, compared with SIS and VMS methods, the M-VMS technique we proposed can reduce scar formation due to the reduction of collagen formation, myofibroblast expression, and TGFß1 expression.
Assuntos
Cicatriz , Colágeno Tipo I , Ratos , Feminino , Animais , Cicatriz/prevenção & controle , Colágeno Tipo III , Actinas , Ratos Sprague-Dawley , Colágeno , Técnicas de SuturaRESUMO
BACKGROUND: Kiwifruit bacterial canker, caused by Pseudomonas syringae pv. actinidiae (Psa), is a destructive disease worldwide. Resistance genes that respond to Psa infection urgently need to be identified for controlling this disease. Laccase is mainly involved in the synthesis of lignin in the plant cell wall and plays a prominent role in plant growth and resistance to pathogen infection. However, the role of laccase in kiwifruit has not been reported, and whether laccase is pivotal in the response to Psa infection remains unclear. RESULTS: We conducted a bioinformatics analysis to identify 55 laccase genes (AcLAC1-AcLAC55) in the kiwifruit genome. These genes were classified into five cluster groups (I-V) based on phylogenetic analysis, with cluster groups I and II having the highest number of members. Analysis of the exon-intron structure revealed that the number of exons varied from 1 to 8, with an average of 5 introns. Our evolutionary analysis indicated that fragment duplication played a key role in the expansion of kiwifruit laccase genes. Furthermore, evolutionary pressure analysis suggested that AcLAC genes were under purifying selection. We also performed a cis-acting element analysis and found that AcLAC genes contained multiple hormone (337) and stress signal (36) elements in their promoter regions. Additionally, we investigated the expression pattern of laccase genes in kiwifruit stems and leaves infected with Psa. Our findings revealed that laccase gene expression levels in the stems were higher than those in the leaves 5 days after inoculation with Psa. Notably, AcLAC2, AcLAC4, AcLAC17, AcLAC18, AcLAC26, and AcLAC42 showed significantly higher expression levels (p < 0.001) compared to the non-inoculated control (0 d), suggesting their potential role in resisting Psa infection. Moreover, our prediction indicated that 21 kiwifruit laccase genes are regulated by miRNA397, they could potentially act as negative regulators of lignin biosynthesis. CONCLUSIONS: These results are valuable for further analysis of the resistance function and molecular mechanism of laccases in kiwifruit.
Assuntos
Actinidia , Lacase , Lacase/genética , Filogenia , Lignina , Evolução Biológica , Actinidia/genética , Actinidia/microbiologia , Pseudomonas syringae/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologiaRESUMO
IMPORTANCE: The adaption and tolerance to various environmental stresses are the fundamental factors for the widespread existence of Listeria monocytogenes. Anti-oxidative stress is the critical mechanism for the survival and pathogenesis of L. monocytogenes. The thioredoxin (Trx) and glutaredoxin (Grx) systems are known to contribute to the anti-oxidative stress of L. monocytogenes, but whether the Dsb system has similar roles remains unknown. This study demonstrated that the DsbA family protein Lmo1059 of L. monocytogenes participates in bacterial oxidative stress tolerance, with Cys36 as the key amino acid of its catalytic activity and anti-oxidative stress ability. It is worth noting that Lmo1059 was involved in the invading and cell-to-cell spread of L. monocytogenes. This study lays a foundation for further understanding the specific mechanisms of oxidative cysteine repair and antioxidant stress regulation of L. monocytogenes, which contributes to an in-depth understanding of the environmental adaptation mechanisms for foodborne bacterial pathogens.
Assuntos
Listeria monocytogenes , Listeria monocytogenes/metabolismo , Estresse Oxidativo , Estresse Fisiológico , Antioxidantes/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismoRESUMO
Hematologic malignancies (HMs) pose a serious threat to patients' health and life, and the five-year overall survival of HMs remains low. The lack of understanding of the pathogenesis and the complex clinical symptoms brings immense challenges to the diagnosis and treatment of HMs. Traditional therapeutic strategies for HMs include radiotherapy, chemotherapy, targeted therapy and hematopoietic stem cell transplantation. Although immunotherapy and cell therapy have made considerable progress in the last decade, nearly half of patients still relapse or suffer from drug resistance. Recently, studies have emerged that nanomaterials, nanotechnology and nanomedicine show great promise in cancer therapy by enhancing drug targeting, reducing toxicity and side effects and boosting the immune response to promote durable immunological memory. In this review, we summarized the strategies of recently developed nanomaterials, nanotechnology and nanomedicines against HMs and then proposed emerging strategies for the future designment of nanomedicines to treat HMs based on urgent clinical needs and technological progress.
Assuntos
Neoplasias Hematológicas , Nanoestruturas , Neoplasias , Humanos , Nanomedicina , Recidiva Local de Neoplasia/tratamento farmacológico , Nanotecnologia , Nanoestruturas/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias/terapiaRESUMO
BACKGROUND: Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system (CNS) in which genetic and environmental factors contribute to disease progression. Both innate and adaptive immune cells, including T cells, B cells, activated macrophages and microglia, have been identified to be involved in the pathogenesis of MS, leading to the CNS inflammation, neurodegeneration and demyelination. In recent years, there has been considerable progress in understanding the contribution of tissue-resident immune cells in the pathogenesis of MS. METHODS: We performed a keyword-based search in PubMed database. We combined "multiple sclerosis" with keywords, such as tissue-resident memory T cells, microglia to search for relevant literatures in PubMed. RESULTS AND CONCLUSION: In this review, we comprehensively describe the characteristics of tissue-resident memory T cells and microglia, summarize their role in the pathogenesis of MS, and discuss their interaction with other immune cells in the CNS.
Assuntos
Esclerose Múltipla , Humanos , Esclerose/patologia , Sistema Nervoso Central , Microglia , Macrófagos , Doença CrônicaRESUMO
Receptor-like kinases (RLKs) constitute the largest receptor family involved in the regulation of plant immunity and growth, but small-molecule inhibitors that target RLKs to improve agronomic traits remain unexplored. The RLK member FERONIA (FER) negatively regulates plant resistance to certain soil-borne diseases that are difficult to control and cause huge losses in crop yields and economy. Here, we identified 33 highly effective FER kinase inhibitors from 1494 small molecules by monitoring FER autophosphorylation in vitro. Four representative inhibitors (reversine, cenisertib, staurosporine and lavendustin A) inhibited the kinase activity of FER and its homologues in several crops by targeting the conserved ATP pocket in the kinase structure. FER contributes to the physiological impact of representative inhibitors in plants. The treatment of roots with reversine, staurosporine and lavendustin A enhanced innate immunity in plant roots and thus alleviated soil-borne diseases in tobacco, tomato and rice without growth penalties. Consistently, RNA sequencing assays showed that lavendustin A and reversine exert profound impacts on immunity-related gene expression. Our results will set a new milestone in the development of the plant RLK kinase regulation theory and provide a novel strategy for the prevention and control of plant soil-borne diseases without growth penalties.
Assuntos
Proteínas de Arabidopsis , Fosfotransferases , Estaurosporina , Fosfotransferases/genética , Imunidade Vegetal/genética , Plantas/metabolismo , Raízes de Plantas , Proteínas de Arabidopsis/genéticaRESUMO
Petal color in Zinnia elegans is characterized mainly by anthocyanin accumulation. The difference in the content of anthocyanins, especially cyanidins, affects petal coloration in Z. elegans, but the underlying regulatory mechanism remains elusive. Here, we report one R2R3-MYB transcription factor from subgroup 6, ZeMYB9, acting as a positive regulator of anthocyanin accumulation in Z. elegans. Up-regulated expression of ZeMYB9 and flavonoid 3'-hydroxylase gene (ZeF3'H) was detected in the cultivar with higher cyanidin content. ZeMYB9 could specifically activate the promoter of ZeF3'H, and over-expression of ZeMYB9 induces much greater anthocyanin accumulation and higher expression level of anthocyanin biosynthetic genes in both petunia and tobacco. And then, ZeMYB9 was demonstrated to interact with ZeGL3, a bHLH transcription factor belonging to IIIf subgroup. Promoter activity of ZeF3'H was significantly promoted by co-expressing ZeMYB9 and ZeGL3 compared with expressing ZeMYB9 alone. Moreover, transient co-expression of ZeMYB9 and ZeGL3 induced anthocyanin accumulation in tobacco leaves. Our results suggest that ZeMYB9 could enhance cyanidin synthesis and regulate petal color in Z. elegans though activating the expression of ZeF3'H, by itself or interacting with ZeGL3.
RESUMO
DNA methyltransferase 3 A (DNMT3A) is the most frequently mutated gene in acute myeloid leukemia (AML). Although chemotherapy agents have improved outcomes for DNMT3A-mutant AML patients, there is still no targeted therapy highlighting the need for further study of how DNMT3A mutations affect AML phenotype. Here, we demonstrate that cell adhesion-related genes are predominantly enriched in DNMT3A-mutant AML cells and identify that graphdiyne oxide (GDYO) display an anti-leukemia effect specifically against these mutated cells. Mechanistically, GDYO directly interacts with integrin ß2 (ITGB2) and c-type mannose receptor (MRC2), which facilitate the attachment and cellular uptake of GDYO. Furthermore, GDYO binds to actin and prevents actin polymerization, thus disrupting the actin cytoskeleton and eventually leading to cell apoptosis. Finally, we validate the in vivo safety and therapeutic potential of GDYO against DNMT3A-mutant AML cells. Collectively, these findings demonstrate that GDYO is an efficient and specific drug candidate against DNMT3A-mutant AML.
Assuntos
DNA (Citosina-5-)-Metiltransferases , Leucemia Mieloide Aguda , Actinas/genética , Antígenos CD18 , DNA , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Metilases de Modificação do DNA/genética , Grafite , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , ÓxidosRESUMO
Human amniotic mesenchymal stem cells (hAMSCs) can be differentiated into Schwann-cell-like cells (SCLCs) in vitro. However, the underlying mechanism of cell differentiation remains unclear. In this study, we explored the phenotype and multipotency of hAMSCs, which were differentiated into SCLCs, and the expression of nerve repair-related Schwann markers, such as S100 calcium binding protein B (S-100), TNF receptor superfamily member 1B (P75), and glial fibrillary acidic protein (GFAP) were observed to be significantly increased. The secreted functional neurotrophic factors, like brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3), were determined and also increased with the differentiation time. Moreover, miR-146a-3p, which significantly decreased during the differentiation of hAMSCs into SCLCs, was selected by miRNA-sequence analysis. Further molecular mechanism studies showed that Erb-B2 receptor tyrosine kinase 2 (ERBB2) was an effective target of miR-146a-3p and that miR-146a-3p down-regulated ERBB2 expression by binding to the 3'-UTR of ERBB2. The expression of miR-146a-3p markedly decreased, while the mRNA levels of ERBB2 increased with the differentiation time. The results showed that down-regulating miR-146a-3p could promote SC lineage differentiation and suggested that miR-146a-3p negatively regulated the Schwann-like phenotype differentiation of hAMSCs by targeting ERBB2. The results will be helpful to establish a deeper understanding of the underlying mechanisms and find novel strategies for cell therapy.
Assuntos
Tecido Adiposo/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Receptor ErbB-2/biossíntese , Células de Schwann/citologia , Células de Schwann/metabolismo , Tecido Adiposo/citologia , Diferenciação Celular/fisiologia , HumanosRESUMO
BACKGROUND: Human papillomavirus (HPV) DNA detection and genotyping is now being used for cervical screening by a growing number of laboratories in Shanghai, but they may have various levels of proficiency. The objective of this study was to evaluate the performance of clinical laboratories for HPV DNA detection and genotyping by an external quality assessment (EQA) program. METHODS: The EQA panels were clinically validated by the Cobas 4800 HPV test, and then distributed to the participating laboratories in May 2015 (round 1) and September 2015 (round 2). Each panel consisted of one negative sample and nine positive cell or clinical samples of HPV16 and HPV18 types at different concentrations. In total, 40 laboratories submitted 18 qualitative and 22 genotyping data sets in round 1 and 44 laboratories submitted 18 qualitative and 26 genotyping data sets in round 2. In both rounds, all laboratories used commercial assays. RESULTS: The negative samples were detected correctly in both rounds by all participating laboratories. There were no false-positive results in the qualitative data sets and only two false-positive results in the genotyping data sets in each of round 1 and round 2. The false-negative rates were 8.0% for round 1 and 2.7% for round 2. For the qualitative data sets, almost all of the laboratories (100% for round 1 and 97.8% for round 2) obtained a score of acceptable or better. For the genotyping results, acceptable or better scores were obtained in 81.8% (round 1) and 100% (round 2). CONCLUSIONS: Our results indicate that the majority of laboratories in Shanghai have reliable diagnostic ability for HPV detection and genotyping. Moreover, this study emphasizes the importance of EQA for monitoring the performance of clinical laboratories.
Assuntos
DNA Viral/análise , DNA Viral/genética , Técnicas de Genotipagem/normas , Papillomaviridae/genética , Garantia da Qualidade dos Cuidados de Saúde , Linhagem Celular Tumoral , China , Técnicas de Laboratório Clínico , Células HeLa , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNARESUMO
Endometriosis is defined by presence of endometrial glands and stroma outside the uterine cavity and it affects approximately 5%-10% of women of reproductive age. Although endometriosis is usually considered to be due to retrograde menstruation, the true pathogenesis of this disease remains poorly understood. Endometriosis is associated with an inflammatory response and this inflammation leads to endothelial dysfunction and might even lead to carcinogenesis. Here, we review our current understanding of the role of inflammatory processes in the pathogenesis of endometriosis.