Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 504
Filtrar
1.
Front Genet ; 15: 1413641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978873

RESUMO

Background: Tumor necrosis factor receptor-associated periodic syndrome (TRAPS) is a rare autosomal dominant disorder with a low incidence in Asia. The most frequent clinical manifestations include fever, rash, myalgia, joint pain and abdominal pain. Misdiagnosis rates are high because of the clinical and genetic variability of the disease. The pathogenesis of TRAPS is complex and yet to be fully defined. Early genetic diagnosis is the key to precise treatment. Methods: In this study, a Chinese family with suspected TRAPS were analyzed by genome-wide SNP genotyping, linkage analysis and targeted sequencing for identification of mutations in causative genes. To study the pathogenicity of the identified gene mutation, we performed a conservation analysis of the mutation site and protein structure analysis. Flow cytometry was used to detect TNFRSF1A shedding and quantitative real-time PCR were used to assess the activation of unfolded protein response (UPR) in the mutation carriers and healthy individuals. Results: A typical TRAPS family history, with a pattern of autosomal dominant inheritance, led to the identification of a rare mutation in the TNFRSF1A gene (c.G374A [p.Cys125Tyr]) with unknown significance. The patient responded well to corticosteroids, and long-term therapy with colchicine effectively reduced the inflammatory attacks. No amyloid complications occurred during the 6-year follow-up. In silico protein analysis showed that the mutation site is highly conversed and the mutation prevents the formation of intrachain disulfide bonds in the protein. Despite a normal shedding of the TNFRSF1A protein from stimulated monocytes in the TRAPS patients with p.C125Y mutation, the expression of CHOP and the splicing of XBP1 was significantly higher than healthy controls, suggesting the presence of an activation UPR. Conclusion: This is the first report of a Chinese family with the rare p.C125Y mutation in TNFRSF1A. The p.C125Y mutation does not result in aberrant receptor shedding, but instead is associated with an activated UPR in these TRAPS patients, which may provide new insights into the pathogenesis of this rare mutation in TRAPS.

2.
Biodes Res ; 6: 0038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919710

RESUMO

Recently, there has been increasing interest in the use of bacteria for cancer therapy due to their ability to selectively target tumor sites and inhibit tumor growth. However, the complexity of the interaction between bacteria and tumor cells evokes unpredictable therapeutic risk, which induces inflammation, stimulates the up-regulation of cyclooxygenase II (COX-2) protein, and stimulates downstream antiapoptotic gene expression in the tumor microenvironment to reduce the antitumor efficacy of chemotherapy and immunotherapy. In this study, we encapsulated celecoxib (CXB), a specific COX-2 inhibitor, in liposomes anchored to the surface of Escherichia coli Nissle 1917 (ECN) through electrostatic absorption (C@ECN) to suppress ECN-induced COX-2 up-regulation and enhance the synergistic antitumor effect of doxorubicin (DOX). C@ECN improved the antitumor effect of DOX by restraining COX-2 expression. In addition, local T lymphocyte infiltration was induced by the ECN to enhance immunotherapy efficacy in the tumor microenvironment. Considering the biosafety of C@ECN, a hypoxia-induced lysis circuit, pGEX-Pvhb-Lysis, was introduced into the ECN to limit the number of ECNs in vivo. Our results indicate that this system has the potential to enhance the synergistic effect of ECN with chemical drugs to inhibit tumor progression in medical oncology.

3.
J Orthop Surg Res ; 19(1): 373, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915104

RESUMO

PURPOSE: The objective of this study was to provide a comprehensive review of the existing literature regarding the treatment of osteochondral lesions of the talus (OLT) using autologous matrix-induced chondrogenesis (AMIC), while also discussing the mid-long term functional outcomes, complications, and surgical failure rate. METHODS: We searched Embase, PubMed, and Web of Science for studies on OLT treated with AMIC with an average follow-up of at least 2 years. Publication information, patient data, functional scores, surgical failure rate, and complications were extracted. RESULTS: A total of 15 studies were screened and included, with 12 case series selected for meta-analysis and 3 non-randomized controlled studies chosen for descriptive analysis. The improvements in the Visual Analog Scale (VAS), the American Orthopaedic Foot & Ankle Society (AOFAS) ankle-hindfoot, and Tegner scores at the last follow-up were (SMD = - 2.825, 95% CI - 3.343 to - 2.306, P < 0.001), (SMD = 2.73, 95% CI 1.60 to 3.86, P < 0.001), (SMD = 0.85, 95% CI 0.5 to 1.2, P < 0.001) respectively compared to preoperative values. The surgery failure rate was 11% (95% CI 8-15%), with a total of 12 patients experiencing complications. CONCLUSION: The use of AMIC demonstrates a positive impact on pain management, functional improvement, and mobility enhancement in patients with OLT. It is worth noting that the choice of stent for AMIC, patient age, and OLT size can influence the ultimate clinical outcomes. This study provides evidences supporting the safety and efficacy of AMIC as a viable treatment option in real-world medical practice.


Assuntos
Condrogênese , Tálus , Transplante Autólogo , Humanos , Tálus/cirurgia , Condrogênese/fisiologia , Transplante Autólogo/métodos , Resultado do Tratamento , Fatores de Tempo , Cartilagem Articular/cirurgia
4.
Neurosci Bull ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869703

RESUMO

This study aimed to identify possible pathogenic genes in a 90-member family with a rare combination of multiple neurodegenerative disease phenotypes, which has not been depicted by the known neurodegenerative disease. We performed physical and neurological examinations with International Rating Scales to assess signs of ataxia, Parkinsonism, and cognitive function, as well as brain magnetic resonance imaging scans with seven sequences. We searched for co-segregations of abnormal repeat-expansion loci, pathogenic variants in known spinocerebellar ataxia-related genes, and novel rare mutations via whole-genome sequencing and linkage analysis. A rare co-segregating missense mutation in the CARS gene was validated by Sanger sequencing and the aminoacylation activity of mutant CARS was measured by spectrophotometric assay. This pedigree presented novel late-onset core characteristics including cerebellar ataxia, Parkinsonism, and pyramidal signs in all nine affected members. Brain magnetic resonance imaging showed cerebellar/pons atrophy, pontine-midline linear hyperintensity, decreased rCBF in the bilateral basal ganglia and cerebellar dentate nucleus, and hypo-intensities of the cerebellar dentate nuclei, basal ganglia, mesencephalic red nuclei, and substantia nigra, all of which suggested neurodegeneration. Whole-genome sequencing identified a novel pathogenic heterozygous mutation (E795V) in the CARS gene, meanwhile, exhibited none of the known repeat-expansions or point mutations in pathogenic genes. Remarkably, this CARS mutation causes a 20% decrease in aminoacylation activity to charge tRNACys with L-cysteine in protein synthesis compared with that of the wild type. All family members carrying a heterozygous mutation CARS (E795V) had the same clinical manifestations and neuropathological changes of Parkinsonism and spinocerebellar-ataxia. These findings identify novel pathogenesis of Parkinsonism-spinocerebellar ataxia and provide insights into its genetic architecture.

5.
Front Immunol ; 15: 1390938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887293

RESUMO

Background: Multiple investigations and scholarly articles have presented compelling evidence indicating that tertiary lymphoid structures (TLS) play a pivotal role in inhibiting and controlling the advancement of tumors. While there is an abundance of information highlighting the importance of TLS in different cancer types, their prognostic significance specifically in hepatocellular carcinoma (HCC) cancers remains unclear. Thus, this meta-analysis aimed to explore the prognostic relevance of TLS in HCC. Methods: We conducted a thorough search across four databases, namely Web of Science, PubMed, Embase, and the Cochrane Library, to identify pertinent studies. The search utilized the keywords "tertiary lymphoid structures" and "hepatocellular carcinoma." The primary outcomes of interest encompassed overall survival (OS), recurrence-free survival (RFS), early recurrence, and late recurrence. The statistical effect size for these measures was expressed in terms of hazard ratios (HR). Results: Six studies were incorporated into the analysis. Among them, four studies, encompassing 6 datasets and involving 1490 patients, and three studies, comprising 5 datasets and involving 656 patients, respectively, investigated the correlation between intratumoral and peritumoral TLSs and the prognosis in HCC patients. The meta-analysis revealed that the presence of intratumoral TLSs is linked to longer RFS and reduced early recurrence (HR, 0.60; 95% CI, 0.50-0.67; p <0.001 and HR, 0.49; 95% CI, 0.36-0.65; p <0.001, respectively). However, no significant association was observed with OS and late recurrence. Sensitivity analysis demonstrated the robustness of these findings, and heterogeneities were minimal. Additionally, the meta-analysis did not detect a relationship between peritumoral TLSs and OS or RFS in HCC patients. Conclusion: The presence of intratumoral TLSs is correlated with better RFS and reduced early recurrence in HCC patients. Further investigation is warranted to elucidate the roles of peritumoral TLSs in the prognosis of HCC patients. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/#recordDetails, identifier CRD42023466793.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Estruturas Linfoides Terciárias , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/mortalidade , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/diagnóstico , Estruturas Linfoides Terciárias/imunologia , Estruturas Linfoides Terciárias/patologia , Prognóstico , Recidiva Local de Neoplasia
6.
Food Chem ; 455: 139923, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833855

RESUMO

This research aimed to develop a novel, effective, and stable delivery system based on zein (ZE), sodium caseinate (SC), and quaternary ammonium chitosan (HACC) for curcumin (CUR). The pH-driven self-assembly combined with electrostatic deposition methods were employed to construct CUR-loaded ZE-SC nanoparticles with HACC coating (ZE-SC@HACC). The optimized nanocomposite was prepared at ZE:SC:HACC:CUR mass ratios of 1:1:2:0.1, and it had encapsulation efficiency of 89.3%, average diameter of 218.2 nm, and ζ-potential of 40.7 mV. The assembly of composites and encapsulation of CUR were facilitated primarily by hydrophobic, hydrogen-bonding, and electrostatic interactions. Physicochemical stability analysis revealed that HACC coating dramatically enhanced ZE-SC nanoparticles' colloidal stability and CUR's resistance to chemical degradation. Additionally, antioxidant activity and simulated digestion results indicated that CUR-ZE-SC@HACC nanoparticles showed higher free radical scavenging capacity and bio-accessibility of CUR than CUR-ZE-SC nanoparticles and free CUR. Therefore, the ZE-SC@HACC nanocomposite is an effective and viable delivery system for CUR.


Assuntos
Antioxidantes , Quitosana , Curcumina , Nanopartículas , Compostos de Amônio Quaternário , Zeína , Curcumina/química , Curcumina/farmacologia , Quitosana/química , Nanopartículas/química , Antioxidantes/química , Antioxidantes/farmacologia , Compostos de Amônio Quaternário/química , Zeína/química , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Caseínas/química , Tamanho da Partícula , Estabilidade de Medicamentos
7.
Bioact Mater ; 39: 206-223, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38827172

RESUMO

Traditional treatments against advanced non-small cell lung cancer (NSCLC) with high morbidity and mortality continue to be dissatisfactory. Given this situation, there is an urgent requirement for alternative modalities that provide lower invasiveness, superior clinical effectiveness, and minimal adverse effects. The combination of photodynamic therapy (PDT) and immunotherapy gradually become a promising approach for high-grade malignant NSCLC. Nevertheless, owing to the absence of precise drug delivery techniques as well as the hypoxic and immunosuppressive characteristics of the tumor microenvironment (TME), the efficacy of this combination therapy approach is less than ideal. In this study, we construct a novel nanoplatform that indocyanine green (ICG), a photosensitizer, loads into hollow manganese dioxide (MnO2) nanospheres (NPs) (ICG@MnO2), and then encapsulated in PD-L1 monoclonal antibodies (anti-PD-L1) reprogrammed exosomes (named ICG@MnO2@Exo-anti-PD-L1), to effectively modulate the TME to oppose NSCLC by the synergy of PDT and immunotherapy modalities. The ICG@MnO2@Exo-anti-PD-L1 NPs are precisely delivered to the tumor sites by targeting specially PD-L1 highly expressed cancer cells to controllably release anti-PD-L1 in the acidic TME, thereby activating T cell response. Subsequently, upon endocytic uptake by cancer cells, MnO2 catalyzes the conversion of H2O2 to O2, thereby alleviating tumor hypoxia. Meanwhile, ICG further utilizes O2 to produce singlet oxygen (1O2) to kill tumor cells under 808 nm near-infrared (NIR) irradiation. Furthermore, a high level of intratumoral H2O2 reduces MnO2 to Mn2+, which remodels the immune microenvironment by polarizing macrophages from M2 to M1, further driving T cells. Taken together, the current study suggests that the ICG@MnO2@Exo-anti-PD-L1 NPs could act as a novel drug delivery platform for achieving multimodal therapy in treating NSCLC.

8.
Phenomics ; 4(2): 187-202, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38884059

RESUMO

The Shroom (Shrm) family of actin-binding proteins has a unique and highly conserved Apx/Shrm Domain 2 (ASD2) motif. Shroom protein directs the subcellular localization of Rho-associated kinase (ROCK), which remodels the actomyosin cytoskeleton and changes cellular morphology via its ability to phosphorylate and activate non-muscle myosin II. Therefore, the Shrm-ROCK complex is critical for the cellular shape and the development of many tissues, including the neural tube, eye, intestines, heart, and vasculature system. Importantly, the structure and expression of Shrm proteins are also associated with neural tube defects, chronic kidney disease, metastasis of carcinoma, and X-link mental retardation. Therefore, a better understanding of Shrm-mediated signaling transduction pathways is essential for the development of new therapeutic strategies to minimize damage resulting in abnormal Shrm proteins. This paper provides a comprehensive overview of the various Shrm proteins and their roles in morphogenesis and disease.

9.
Plant Dis ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916905

RESUMO

Cigar tobacco (Nicotiana tabacum L.) is widely planted in Yunnan, which is becoming an important economic crop in China. In March 2023, root rot of cigar tobacco (cv. Yunxue 38) was observed in Baoshan (98°51'E, 24°58'N), and in July 2022 root rot of tobacco (cv. Yunyan 87) was observed in Dali (99°54'E, 26°30'N), Yunnan Province, China. The average disease incidences surveyed in the fields reached 10%. At the early stage, the bottom leaves showed wilting and turned yellow, and the roots became brown. Following the disease development, the color of roots turned to dark brown and ultimately necrosis. To isolate the causal agent, small pieces (5×5 mm) of diseased root from 6 symptomatic plant samples (three samples of cv. Yunxue 38 and three samples of cv. Yunyan 87) were cut. Pieces were surface-sterilized by dipping in 75% ethanol for 30 s, rinsed three times with sterile distilled water, then transferred to potato dextrose agar (PDA) medium and incubated at 28°C in the dark. Six fungal isolates cultured for 14 days were obtained. They were morphologically similar, so a representative isolate was selected for the following experiment. The colonies grew slowly on PDA, and their color were light pink initially, then changed to amaranth. Hyphae were hyaline and septate. Microconidia were hardly produced on PDA plates. After 14 days of culture on V8 juice agar, the colonies showed white aerial mycelia, and ellipsoidal and transparent conidia were observed, which measured 6.5 to 8.3 × 3.4 to 5.0 µm (n=20). Also, the pycnidia were measured 150 to 220 µm, that were subglobose in dark brown with brown setae. These morphological characteristics of 22DL91 were identical to S. terrestris (Boerema et al. 2004). For molecular identification, DNA was extracted and the PCR products of ITS region and polymerase II second largest subunit (RPB2), amplified with the primers ITS1/ITS4 and RPB2-5F/RPB2-7cR, were sequenced. By BLASTn analysis, the obtained ITS sequences showed 100% homology and the RPB2 sequences showed 95% homology with S. terrestris strains in GenBank (accession ON006851 and OM417590). The sequences were deposited in NCBI with accession numbers OR539491 (ITS) and OR554276 (RPB2), respectively. Based on the morphology and phylogenetic analysis, the isolate was 22DL91 identified as S. terrestris. Pathogenicity was evaluated on 50-day-old cigar tobacco seedlings (cv. Yunxue 38) and tobacco seedlings (cv. Yunyan 87). Ten plants were inoculated with 20 mL of conidial suspension of 105 conidia/mL poured onto the roots and ten control seedlings dipped in sterile water as controls (Luo et al. 2023). After 14 days, all inoculated seedlings showed the symptoms with leaves yellowing and root rot, whereas the control seedlings had no symptoms. Moreover, the fungus S. terrestris was reisolated from the infected roots, fulfilling Koch's postulates. This fungus was previously known to cause pink root on garlic in China (Zhang et al. 2019). To our knowledge, this is the first report of S. terrestris causing root rot of Nicotiana tabacum in China. Therefore, this finding will provide valuable information for prevention and management of root rot on tobacco.

10.
Cancer Lett ; 595: 216989, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38825162

RESUMO

Exosomes, a subset of extracellular vesicles, are released by all active cells and play a crucial role in intercellular communications. Exosomes could facilitate the transfer of various biologically active molecules, such as DNA, non-coding RNAs, and proteins, from donor to recipient cells, thereby participating in diverse biological and pathological processes. Besides, exosomes possess unique characteristics, including non-toxicity, low-immunogenicity, and stability within biological systems, rendering them highly advantageous for cancer drug development. Meanwhile, accumulating evidence suggests that exosomes originating from tumor cells and immune cells possess distinct composition profiles that play a direct role in anticancer immunotherapy. Of note, exosomes can transport their contents to specific cells, thereby exerting an impact on the phenotype and immune-regulatory functions of targeted cells. Therapeutic cancer vaccines, an emerging therapeutics of immunotherapy, could enhance antitumor immune responses by delivering a large number of tumor antigens, thereby augmenting the immune response against tumor cells. Therefore, the therapeutic rationale of cancer vaccines and exosome-based immunotherapy are almost similar to some extent, but some challenges have hindered their application in the clinical setting. Here, in this review, we first summarized the biogenesis, structure, compositions, and biological functions of exosomes. Then we described the roles of exosomes in cancer biology, particularly in tumor immunity. We also comprehensively reviewed current exosome-based anticancer vaccine development and we divided them into three types. Finally, we give some insights into clinical translation and clinical trial progress of exosome-based anticancer vaccines for future direction.


Assuntos
Vacinas Anticâncer , Exossomos , Imunoterapia , Neoplasias , Humanos , Exossomos/imunologia , Exossomos/metabolismo , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Neoplasias/imunologia , Neoplasias/terapia , Imunoterapia/métodos , Animais
11.
Heliyon ; 10(10): e30667, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38765043

RESUMO

Based on the water-rock-gas coupling test system, the work combined the scanning electron microscope and XTDIC 3D full-field strain measurement system. The Brazilian splitting test was performed on four groups of sandy mudstone specimens under contrast (CO), mash-gas soaking (MS), water-mash gas soaking (WM), and water-soaking (WS) conditions. The tensile strength, deformation failure, and microscopic characteristics of fractures were studied to reveal the deterioration mechanism of the tensile properties of sandy mudstone under water-gas coupling. The results showed that the uniaxial tensile strength of sandy mudstone specimens under the three soaking conditions was less than that of the contrast conditions. Compared with specimens in the CO group, the tensile strength of specimens in MS-WS groups was reduced; the WS group decreased the most. Specimens changed from brittle failure to plastic failure after soaking. The decrease rate in strength after the peak was consistent with the change trend in tensile strength. It led to a larger localized deformation zone of specimens and more obvious displacement. The deformation localization zone of the WS group was the broadest, with the most intense displacement. Besides, stress concentration first occurred in the submerged part of the WM group. Fractures expanded in the direction of maximum principal strain. The internal pore structure of sandy mudstone specimens in each group changed after soaking. The average porosity, maximum pore area, and probability entropy of specimens in WS-MS groups increased compared to the CO group. The WS group had the largest reduction and the MS group had the smallest. The pre-peak energy storage capacity of sandy mudstone specimens was gradually weakened. Compared with the CO group, that in the WS-MS groups was reduced. The WS group had the greatest reduction, and the MS group had the smallest. The deterioration effect of water on the interior of sandy mudstone was stronger than that of gas. The work is of great significance for understanding the stability of coal and rocks in closed-pit high-gas mines.

12.
Anal Methods ; 16(20): 3209-3219, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38713168

RESUMO

BACKGROUND: halogenic disinfectants have been shown to produce toxic and carcinogenic disinfection by-products in the water disinfection process. Dibromohydantoin (DBDMH) is a commonly used water disinfectant in aquaculture. Aquaculture water has more complex matrix, and the analytical method for disinfection by-products (DBPs) have not been reported. Since the content of DBPs is related to the external conditions such as ultraviolet irradiation, temperatures, pH and humic acid. The semi-target screening method for mainly DBPs based on tracing mass spectrometry fragments of bromide and accurate mass of high resolution mass spectrometry was established by ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-tof/MS). Br-DBPs as a important class of DBPs from DBDMH, which quantification analysis methods were developed based on accurate mass of high resolution mass spectrometry. METHODS: through screening method to identify unknown Br-DBPs and quantitative analysis of the typical 4-bromophenol by-product of accurate mass was established. The conditions of the instrument parameters of mass spectrometry and SPE sample preparation procedure in complex real sample were optimized. The high efficiency method was demonstrated for the determination of Br-DBPs with a good linear correlation (R2 = 0.999) in the range of 0.500-200 µg L-1 and limit of detections (LODs) and limit of quantifications (LOQs) were 0.0250 ng L-1 and 0.0834 ng L-1, respectively. CONCLUSION: the developed screening and quantification analytical strategy for Br-DBPs is rapid, accurate and sensitivity applicable for environmental in aquaculture water monitoring.


Assuntos
Aquicultura , Desinfetantes , Espectrometria de Massas , Poluentes Químicos da Água , Aquicultura/métodos , Cromatografia Líquida de Alta Pressão/métodos , Poluentes Químicos da Água/análise , Espectrometria de Massas/métodos , Desinfetantes/análise , Desinfetantes/química , Desinfecção/métodos
13.
J Clin Immunol ; 44(6): 131, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775840

RESUMO

RHOH, an atypical small GTPase predominantly expressed in hematopoietic cells, plays a vital role in immune function. A deficiency in RHOH has been linked to epidermodysplasia verruciformis, lung disease, Burkitt lymphoma and T cell defects. Here, we report a novel germline homozygous RHOH c.245G > A (p.Cys82Tyr) variant in a 21-year-old male suffering from recurrent, invasive, opportunistic infections affecting the lungs, eyes, and brain. His sister also succumbed to a lung infection during early adulthood. The patient exhibited a persistent decrease in CD4+ T, B, and NK cell counts, and hypoimmunoglobulinemia. The patient's T cell showed impaired activation upon in vitro TCR stimulation. In Jurkat T cells transduced with RHOHC82Y, a similar reduction in activation marker CD69 up-regulation was observed. Furthermore, the C82Y variant showed reduced RHOH protein expression and impaired interaction with the TCR signaling molecule ZAP70. Together, these data suggest that the newly identified autosomal-recessive RHOH variant is associated with T cell dysfunction and recurrent opportunistic infections, functioning as a hypomorph by disrupting ZAP70-mediated TCR signaling.


Assuntos
Homozigoto , Infecções Oportunistas , Humanos , Masculino , Adulto Jovem , Células Jurkat , Ativação Linfocitária/genética , Infecções Oportunistas/genética , Infecções Oportunistas/imunologia , Linhagem , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Recidiva , Linfócitos T/imunologia , Proteína-Tirosina Quinase ZAP-70/genética , Proteína-Tirosina Quinase ZAP-70/metabolismo
14.
J Ethnopharmacol ; 331: 118274, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38697410

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with reproductive dysfunction and metabolic abnormalities, particularly characterized by insulin resistance and chronic low-grade inflammation. Multiple clinical studies have clearly demonstrated the significant efficacy and safety of the combination of Bailing capsules (BL) in the treatment of PCOS, but its pharmacological effects and mechanisms still require further study. AIM OF THE STUDY: To evaluate the effect of BL on improving PCOS in mice and explore the mechanism. METHODS: In this study, Dehydroepiandrosterone (DHEA) injection was administered alone and in combination with a high-fat and high-sugar diet to induce PCOS-like mouse. They were randomly divided into five groups: normal group (N), PCOS group (P), Bailing capsule low-dose group (BL-L), Bailing capsule high-dose group (BL-H) and Metformin + Daine-35 group (M + D). Firstly, the effects of BL on ovarian lesions, serum hormone levels, HOMA-IR, intestinal barrier function, inflammation levels, along with the expression of IRS1, PI3K, AKT, TLR4, Myd88, NF-κB p65, TNF-α, IL-6, and Occludin of the ovary, liver and colon were investigated. Finally, the composition of the gut microbiome of fecal was tested. RESULTS: The administration of BL significantly reduced body weight, improved hormone levels, improved IR, and attenuated pathological damage to ovarian tissues, up-regulated the expression of IRS1, PI3K, and AKT in liver. It also decreased serum LPS, TNF-α, and IL-6 levels, while downregulating the expression of Myd88, TLR4, and NF-κB p65. Additionally, BL improved intestinal barrier damage and upregulated the expression of Occludin. Interestingly, the abundance of norank_f__Muribaculacea and Lactobacillus was down-regulated, while the abundance of Akkermansia was significantly up-regulated. CONCLUSION: The results of the study showed that BL exerts a treatment PCOS effect, which may be related to the modulation of the gut microbiota, the improvement of insulin resistance and the intestinal-derived LPS-TLR4 inflammatory pathway. Our research will provide a theoretical basis for the clinical treatment of PCOS.


Assuntos
Medicamentos de Ervas Chinesas , Lipopolissacarídeos , Síndrome do Ovário Policístico , Transdução de Sinais , Receptor 4 Toll-Like , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/induzido quimicamente , Animais , Feminino , Receptor 4 Toll-Like/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Resistência à Insulina , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Desidroepiandrosterona/farmacologia , Cápsulas , Intestinos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ovário/patologia
15.
J Integr Plant Biol ; 66(7): 1481-1499, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38695653

RESUMO

Vicinal oxygen chelate (VOC) proteins are members of an enzyme superfamily with dioxygenase or non-dioxygenase activities. However, the biological functions of VOC proteins in plants are poorly understood. Here, we show that a VOC in Nicotiana benthamiana (NbVOC1) facilitates viral infection. NbVOC1 was significantly induced by infection by beet necrotic yellow vein virus (BNYVV). Transient overexpression of NbVOC1 or its homolog from Beta vulgaris (BvVOC1) enhanced BNYVV infection in N. benthamiana, which required the nuclear localization of VOC1. Consistent with this result, overexpressing NbVOC1 facilitated BNYVV infection, whereas, knockdown and knockout of NbVOC1 inhibited BNYVV infection in transgenic N. benthamiana plants. NbVOC1 interacts with the basic leucine zipper transcription factors bZIP17/28, which enhances their self-interaction and DNA binding to the promoters of unfolded protein response (UPR)-related genes. We propose that bZIP17/28 directly binds to the NbVOC1 promoter and induces its transcription, forming a positive feedback loop to induce the UPR and facilitating BNYVV infection. Collectively, our results demonstrate that NbVOC1 positively regulates the UPR that enhances viral infection in plants.


Assuntos
Nicotiana , Proteínas de Plantas , Resposta a Proteínas não Dobradas , Nicotiana/virologia , Nicotiana/genética , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Doenças das Plantas/virologia , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas/genética , Dioxigenases/metabolismo , Dioxigenases/genética
16.
Plant J ; 119(2): 720-734, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38713838

RESUMO

The RNA regulatory network is a complex and dynamic regulation in plant cells involved in mRNA modification, translation, and degradation. Ras-GAP SH3 domain-binding protein (G3BP) is a scaffold protein for the assembly of stress granules (SGs) and is considered an antiviral component in mammals. However, the function of G3BP during virus infection in plants is still largely unknown. In this study, four members of the G3BP-like proteins (NtG3BPLs) were identified in Nicotiana tabacum and the expression levels of NtG3BPL1 were upregulated during chilli veinal mottle virus (ChiVMV) infection. NtG3BPL1 was localized in the nucleus and cytoplasm, forming cytoplasmic granules under transient high-temperature treatment, whereas the abundance of cytoplasmic granules was decreased under ChiVMV infection. Overexpression of NtG3BPL1 inhibited ChiVMV infection and delayed the onset of symptoms, whereas knockout of NtG3BPL1 promoted ChiVMV infection. In addition, NtG3BPL1 directly interacted with ChiVMV 6K2 protein, whereas 6K2 protein had no effect on NtG3BPL1-derived cytoplasmic granules. Further studies revealed that the expression of NtG3BPL1 reduced the chloroplast localization of 6K2-GFP and the NtG3BPL1-6K2 interaction complex was localized in the cytoplasm. Furthermore, NtG3BPL1 promoted the degradation of 6K2 through autophagy pathway, and the accumulation of 6K2 and ChiVMV was affected by autophagy activation or inhibition in plants. Taken together, our results demonstrate that NtG3BPL1 plays a positive role in tobacco resistance against ChiVMV infection, revealing a novel mechanism of plant G3BP in antiviral strategy.


Assuntos
Nicotiana , Doenças das Plantas , Proteínas de Plantas , Nicotiana/virologia , Nicotiana/genética , Nicotiana/metabolismo , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Potyvirus/fisiologia
17.
ACS Appl Mater Interfaces ; 16(17): 21400-21414, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640094

RESUMO

Morin, a naturally occurring bioactive compound shows great potential as an antioxidant, anti-inflammatory agent, and regulator of blood glucose levels. However, its low water solubility, poor lipid solubility, limited bioavailability, and rapid clearance in vivo hinder its application in blood glucose regulation. To address these limitations, we report an enzymatically synthesized nanosized morin particle (MNs) encapsulated in sodium alginate microgels (M@SA). This approach significantly enhances morin's delivery efficiency and therapeutic efficacy in blood glucose regulation. Utilizing horseradish peroxidase, we synthesized MNs averaging 305.7 ± 88.7 nm in size. These MNs were then encapsulated via electrohydrodynamic microdroplet spraying to form M@SA microgels. In vivo studies revealed that M@SA microgels demonstrated prolonged intestinal retention and superior efficacy compared with unmodified morin and MNs alone. Moreover, MNs notably improved glucose uptake in HepG2 cells. Furthermore, M@SA microgels effectively regulated blood glucose, lipid profiles, and oxidative stress in diabetic mice while mitigating liver, kidney, and pancreatic damage and enhancing anti-inflammatory responses. Our findings propose a promising strategy for the oral administration of natural compounds for blood glucose regulation, with implications for broader therapeutic applications.


Assuntos
Glicemia , Diabetes Mellitus Experimental , Flavonas , Flavonoides , Nanopartículas , Animais , Humanos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Camundongos , Flavonoides/química , Flavonoides/farmacologia , Células Hep G2 , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/sangue , Nanopartículas/química , Nanopartículas/uso terapêutico , Alginatos/química , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/química , Antioxidantes/farmacologia , Masculino , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacocinética , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia
18.
Int J Pharm ; 657: 124143, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38663641

RESUMO

Gastric ulcer, a significant health issue characterized by the degradation of the gastric mucosa, often arises from excessive gastric acid secretion and poses a challenge in current medical treatments due to the limited efficacy and side effects of first-line drugs. Addressing this, our study develops a novel therapeutic strategy leveraging gas therapy, specifically targeting the release of hydrogen sulfide (H2S) in the treatment of gastric ulcers. We successfully developed a composite nanoparticle, named BSA·SH-DATS, through a two-step process. Initially, bovine serum albumin (BSA) was sulfhydrated to generate BSA·SH nanoparticles via a mercaptosylation method. Subsequently, these nanoparticles were further functionalized by incorporating diallyltrisulfide (DATS) through a precise Michael addition reaction. This sequential modification resulted in the creation of BSA·SH-DATS nanoparticles. Our comprehensive in vitro and in vivo investigations demonstrate that these nanoparticles possess an exceptional ability for site-specific action on gastric mucosal cells under the controlled release of H2S in response to endogenous glutathione (GSH), markedly diminishing the production of pro-inflammatory cytokines, thereby alleviating inflammation and apoptosis. Moreover, the BSA·SH-DATS nanoparticles effectively regulate critical inflammatory proteins, including NF-κB and Caspase-3. Our study underscores their potential as a transformative approach for gastric ulcer treatment.


Assuntos
Compostos Alílicos , Etanol , Mucosa Gástrica , Sulfeto de Hidrogênio , Nanopartículas , Soroalbumina Bovina , Úlcera Gástrica , Sulfetos , Animais , Sulfetos/química , Sulfetos/administração & dosagem , Sulfetos/farmacologia , Nanopartículas/química , Etanol/química , Compostos Alílicos/química , Compostos Alílicos/farmacologia , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Mucosa Gástrica/metabolismo , Mucosa Gástrica/efeitos dos fármacos , Sulfeto de Hidrogênio/química , Soroalbumina Bovina/química , Masculino , Apoptose/efeitos dos fármacos , Glutationa/metabolismo , Camundongos , Citocinas/metabolismo , Humanos , NF-kappa B/metabolismo
19.
Nat Commun ; 15(1): 2491, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509076

RESUMO

Subgenome dominance has been reported in diverse allopolyploid species, where genes from one subgenome are preferentially retained and are more highly expressed than those from other subgenome(s). However, the molecular mechanisms responsible for subgenome dominance remain poorly understood. Here, we develop genome-wide map of accessible chromatin regions (ACRs) in cultivated strawberry (2n = 8x = 56, with A, B, C, D subgenomes). Each ACR is identified as an MNase hypersensitive site (MHS). We discover that the dominant subgenome A contains a greater number of total MHSs and MHS per gene than the submissive B/C/D subgenomes. Subgenome A suffers fewer losses of MHS-related DNA sequences and fewer MHS fragmentations caused by insertions of transposable elements. We also discover that genes and MHSs related to stress response have been preferentially retained in subgenome A. We conclude that preservation of genes and their cognate ACRs, especially those related to stress responses, play a major role in the establishment of subgenome dominance in octoploid strawberry.


Assuntos
Fragaria , Genoma de Planta , Genoma de Planta/genética , Fragaria/genética , Cromatina/genética , Poliploidia , Mapeamento Cromossômico
20.
Parasit Vectors ; 17(1): 105, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439083

RESUMO

BACKGROUND: The human sortilin protein is an important drug target and detection marker for cancer research. The sortilin from Toxoplasma gondii transports proteins associated with the apical organelles of the parasite. In this study, we aimed to determine the intracellular localization and structural domains of T. gondii sortilin, which may mediate protein transportation. Approaches to the functional inhibition of sortilin to establish novel treatments for T. gondii infections were explored. METHODS: A gene encoding the sortilin protein was identified in the T. gondii genome. Immunoprecipitation and mass spectrometry were performed to identify the protein species transported by T. gondii sortilin. The interaction of each structural domain of sortilin with the transported proteins was investigated using bio-layer interferometry. The binding regions of the transported proteins in sortilin were identified. The effect of the sortilin inhibitor AF38469 on the infectivity of T. gondii was investigated. The binding site of AF38469 on sortilin was determined. RESULTS: The subdomains Vps10, sortilin-C, and sortilin-M of the sortilin were identified as the binding regions for intracellular transportation of the target proteins. The sortilin inhibitor AF38469 bound to the Vps10 structural domain of T. gondii sortilin, which inhibited parasite invasion, replication, and intracellular growth in vitro and was therapeutic in mice infected with T. gondii. CONCLUSION: The Vps10, sortilin-C, and sortilin-M subdomains of T. gondii sortilin were identified as functional regions for intracellular protein transport. The binding region for the sortilin inhibitor AF38469 was also identified as the Vps10 subdomain. This study establishes sortilin as a promising drug target against T. gondii and provides a valuable reference for the development of anti-T. gondii drug-target studies.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Hidrocarbonetos Fluorados , Parasitos , Piridinas , Toxoplasma , Humanos , Animais , Camundongos , Toxoplasma/genética , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA