Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 43(1): 133, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698462

RESUMO

BACKGROUND: Targeting ferroptosis has been identified as a promising approach for the development of cancer therapies. Monounsaturated fatty acid (MUFA) is a type of lipid that plays a crucial role in inhibiting ferroptosis. Ficolin 3 (FCN3) is a component of the complement system, serving as a recognition molecule against pathogens in the lectin pathway. Recent studies have reported that FCN3 demonstrates inhibitory effects on the progression of certain tumors. However, whether FCN3 can modulate lipid metabolism and ferroptosis remains largely unknown. METHODS: Cell viability, BODIPY-C11 staining, and MDA assay were carried out to detect ferroptosis. Primary hepatocellular carcinoma (HCC) and xenograft models were utilized to investigate the effect of FCN3 on the development of HCC in vivo. A metabonomic analysis was conducted to assess alterations in intracellular and HCC intrahepatic lipid levels. RESULTS: Our study elucidates a substantial decrease in the expression of FCN3, a component of the complement system, leads to MUFA accumulation in human HCC specimens and thereby significantly promotes ferroptosis resistance. Overexpression of FCN3 efficiently sensitizes HCC cells to ferroptosis, resulting in the inhibition of the oncogenesis and progression of both primary HCC and subcutaneous HCC xenograft. Mechanistically, FCN3 directly binds to the insulin receptor ß (IR-ß) and its pro-form (pro-IR), inhibiting pro-IR cleavage and IR-ß phosphorylation, ultimately resulting in IR-ß inactivation. This inactivation of IR-ß suppresses the expression of sterol regulatory element binding protein-1c (SREBP1c), which subsequently suppresses the transcription of genes related to de novo lipogenesis (DNL) and lipid desaturation, and consequently downregulates intracellular MUFA levels. CONCLUSIONS: These findings uncover a novel regulatory mechanism by which FCN3 enhances the sensitivity of HCC cells to ferroptosis, indicating that targeting FCN3-induced ferroptosis is a promising strategy for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Animais , Feminino , Humanos , Masculino , Camundongos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação para Baixo , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Diabetes ; 73(5): 682-700, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38394642

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is considered a risk factor for cardiovascular and cerebrovascular disease owing to its close association with coagulant disturbances. However, the precise biological functions and mechanisms that connect coagulation factors to NAFLD pathology remain inadequately understood. Herein, with unbiased bioinformatics analyses followed by functional testing, we demonstrate that hepatic expression of coagulation factor VII (FVII) decreases in patients and mice with NAFLD/nonalcoholic steatohepatitis (NASH). By using adenovirus-mediated F7-knockdown and hepatocyte-specific F7-knockout mouse models, our mechanistic investigations unveil a noncoagulant function of hepatic FVII in mitigating lipid accumulation and lipotoxicity. This protective effect is achieved through the suppression of fatty acid uptake, orchestrated via the AKT-CD36 pathway. Interestingly, intracellular FVII directly interacts with AKT and PP2A, thereby promoting their association and triggering the dephosphorylation of AKT. Therapeutic intervention through adenovirus-mediated liver-specific overexpression of F7 results in noteworthy improvements in liver steatosis, inflammation, injury, and fibrosis in severely afflicted NAFLD mice. In conclusion, our findings highlight coagulation factor FVII as a critical regulator of hepatic steatosis and a potential target for the treatment of NAFLD and NASH.


Assuntos
Fator VII , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Fator VII/genética , Fator VII/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
J Mol Cell Biol ; 15(9)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37771074

RESUMO

Nonalcoholic steatohepatitis (NASH) is a condition that progresses from nonalcoholic fatty liver disease (NAFLD) and is characterized by hepatic fat accumulation, inflammation, and fibrosis. It has the potential to develop into cirrhosis and liver cancer, and currently no effective pharmacological treatment is available. In this study, we investigate the therapeutic potential of targeting ceruloplasmin (Cp), a copper-containing protein predominantly secreted by hepatocytes, for treating NASH. Our result show that hepatic Cp is remarkedly upregulated in individuals with NASH and the mouse NASH model. Hepatocyte-specific Cp ablation effectively attenuates the onset of dietary-induced NASH by decreasing lipid accumulation, curbing inflammation, mitigating fibrosis, and ameliorating liver damage. By employing transcriptomics and metabolomics approaches, we have discovered that hepatic deletion of Cp brings about remarkable restoration of bile acid (BA) metabolism during NASH. Hepatic deletion of Cp effectively remodels BA metabolism by upregulating Cyp7a1 and Cyp8b1, which subsequently leads to enhanced BA synthesis and notable alterations in BA profiles. In conclusion, our studies elucidate the crucial involvement of Cp in NASH, highlighting its significance as a promising therapeutic target for the treatment of this disease.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ceruloplasmina/metabolismo , Ceruloplasmina/farmacologia , Ceruloplasmina/uso terapêutico , Fígado/metabolismo , Inflamação/patologia , Fibrose , Ácidos e Sais Biliares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA