Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Signal Transduct Target Ther ; 8(1): 294, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37553378

RESUMO

Cancer and impaired tissue wound healing with ageing are closely related to the quality of life of the elderly population. Given the increased incidence of cancer and the population ageing trend globally, it is very important to explore how ageing impairs tissue wound healing and spontaneous cancer. In a murine model of DSS-induced acute colitis and AOM/DSS-induced colitis-associated cancer (CAC), we found ageing significantly decreases intestinal wound healing and simultaneous CAC initiation, although ageing does not affect the incidence of AOM-induced, sporadic non-inflammatory CRC. Mechanistically, reduced fibroblasts were observed in the colitis microenvironment of ageing mice. Through conditional lineage tracing, an important source of fibroblasts potentially derived from intestinal smooth muscle cells (ISMCs) was identified orchestrating intestinal wound healing and CAC initiation in young mice. However, the number of transformed fibroblasts from ISMCs significantly decreased in ageing mice, accompanied by decreased intestinal wound healing and decreased CAC initiation. ISMCs-fibroblasts transformation in young mice and reduction of this transformation in ageing mice were also confirmed by ex-vivo intestinal muscular layer culture experiments. We further found that activation of YAP/TAZ in ISMCs is required for the transformation of ISMCs into fibroblasts. Meanwhile, the reduction of YAP/TAZ activation in ISMCs during intestinal wound healing was observed in ageing mice. Conditional knockdown of YAP/TAZ in ISMCs of young mice results in reduced fibroblasts in the colitis microenvironment, decreased intestinal wound healing and decreased CAC initiation, similar to the phenotype of ageing mice. In addition, the data from intestine samples derived from inflammatory bowel disease (IBD) patients show that activation of YAP/TAZ also occurs in ISMCs from these patients. Collectively, our work reveals an important role of the ageing stromal microenvironment in intestinal wound healing and CAC initiation. Furthermore, our work also identified a potential source of fibroblasts involved in colitis and CAC.


Assuntos
Neoplasias Associadas a Colite , Colite , Idoso , Camundongos , Humanos , Animais , Neoplasias Associadas a Colite/complicações , Qualidade de Vida , Intestinos , Colite/induzido quimicamente , Colite/complicações , Colite/genética , Cicatrização/genética , Fibroblastos , Músculo Liso , Microambiente Tumoral
2.
JCI Insight ; 7(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35617032

RESUMO

Long noncoding RNA (lncRNA) plays a crucial role in the pathogenesis of various diseases, including colorectal cancer (CRC). The gene mutations of adenomatous polyposis coli (APC) were found in most patients with CRC. They function as important inducers of tumorigenesis. Based on our microarray results, we identified a specific upregulated lncRNA in CRC (SURC). Further analysis showed that high SURC expression correlated with poorer disease-free survival and overall survival in patients with CRC. Furthermore, we found that mutated APC genes can promote the transcription of SURC by reducing the degradation of ß-catenin protein in CRC. Functional assays revealed that knockdown of SURC impaired CRC cell proliferation, colony formation, cell cycle, and tumor growth. Additionally, SURC promotes CCND2 expression by inhibiting the expression of miR-185-5p in CRC cells. In conclusion, we demonstrate that SURC is a specific upregulated lncRNA in CRC and the SURC/miR-185-5p/CCND2 axis may be targetable for CRC diagnosis and therapy.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA