Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Dyn ; 253(10): 940-948, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38481039

RESUMO

BACKGROUND: Disruption of ALX4 causes autosomal dominant parietal foramina and autosomal recessive frontonasal dysplasia with alopecia, but the mechanisms involving ALX4 in craniofacial and other developmental processes are not well understood. Although mice carrying distinct mutations in Alx4 have been previously reported, the perinatal lethality of homozygous mutants together with dynamic patterns of Alx4 expression in multiple tissues have hindered systematic elucidation of the cellular and molecular mechanisms involving Alx4 in organogenesis and disease pathogenesis. RESULTS: We report generation of Alx4f/f conditional mice and show that tissue-specific Cre-mediated inactivation of Alx4 in cranial neural crest and limb bud mesenchyme, respectively, recapitulated craniofacial and limb developmental defects as found in Alx4-null mice but without affecting postnatal survival. While Alx4-null mice that survive postnatally exhibited dorsal alopecia, mice lacking Alx4 function in the neural crest lineage exhibited a highly restricted region of hair loss over the anterior skull whereas mice lacking Alx4 in the cranial mesoderm lineage exhibited normal hair development, suggesting that Alx4 plays partly redundant roles in multiple cell lineages during hair follicle development. CONCLUSION: The Alx4f/f mice provide a valuable resource for systematic investigation of cell type- and stage-specific function of ALX family transcription factors in development and disease.


Assuntos
Proteínas de Ligação a DNA , Crista Neural , Animais , Camundongos , Crista Neural/metabolismo , Crista Neural/embriologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Crânio/embriologia , Crânio/metabolismo , Cabelo/crescimento & desenvolvimento , Cabelo/metabolismo , Linhagem da Célula , Anormalidades Craniofaciais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Camundongos Knockout , Mesoderma/metabolismo , Mesoderma/embriologia , Regulação da Expressão Gênica no Desenvolvimento
2.
J Clin Invest ; 133(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847567

RESUMO

Three sisters, born from consanguineous parents, manifested a unique Müllerian anomaly characterized by uterine hypoplasia with thin estrogen-unresponsive endometrium and primary amenorrhea, but with spontaneous tubal pregnancies. Through whole-exome sequencing followed by comprehensive genetic analysis, a missense variant was identified in the OSR1 gene. We therefore investigated OSR1/OSR1 expression in postpubertal human uteri, and the prenatal and postnatal expression pattern of Osr1/Osr1 in murine developing Müllerian ducts (MDs) and endometrium, respectively. We then investigated whether Osr1 deletion would affect MD development, using WT and genetically engineered mice. Human uterine OSR1/OSR1 expression was found primarily in the endometrium. Mouse Osr1 was expressed prenatally in MDs and Wolffian ducts (WDs), from rostral to caudal segments, in E13.5 embryos. MDs and WDs were absent on the left side and MDs were rostrally truncated on the right side of E13.5 Osr1-/- embryos. Postnatally, Osr1 was expressed in mouse uteri throughout their lifespan, peaking at postnatal days 14 and 28. Osr1 protein was present primarily in uterine luminal and glandular epithelial cells and in the epithelial cells of mouse oviducts. Through this translational approach, we demonstrated that OSR1 in humans and mice is important for MD development and endometrial receptivity and may be implicated in uterine factor infertility.


Assuntos
Infertilidade , Ductos Paramesonéfricos , Animais , Feminino , Humanos , Camundongos , Gravidez , Endométrio , Células Epiteliais , Ductos Paramesonéfricos/metabolismo , Útero
3.
Cell Mol Gastroenterol Hepatol ; 15(5): 1117-1133, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36581078

RESUMO

BACKGROUND & AIMS: Liver macrophage-mediated inflammation contributes to the pathogenesis of the nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Odd skipped-related 1 (Osr1) is a putative transcription factor previously reported to be involved in NASH progression; however, the underlying mechanisms remain unknown. The current study focused on the role of Osr1 in macrophage polarization and metabolism and its associated functions in the inflammation-induced pathogenesis of NASH. METHODS: OSR1/Osr1 expression patterns were compared in normal and NASH patients and mouse livers. NASH was established and compared between hepatocyte-specific Osr1 knockout (Osr1ΔHep), macrophage-specific Osr1 knockout (Osr1ΔMφ), and wild-type (Osr1F) mice fed with 3 different chronic obesogenic diets and methionine choline-deficient diet. Using genetic and therapeutic strategies in vitro and in vivo, the downstream targets of Osr1 and the associated mechanisms in inflammation-induced NASH were established. RESULTS: Osr1 was expressed in both hepatocytes and macrophages and exhibited different expression patterns in NASH. In NAFLD and NASH murine models, deleting Osr1 in myeloid cells (Osr1ΔMφ), but not hepatocytes, aggravated steatohepatitis with pronounced liver inflammation. Myeloid Osr1 deletion resulted in a polarization switch toward a pro-inflammatory phenotype associated with reduced oxidative phosphorylation activity. These inflamed Osr1ΔMφ macrophages promoted steatosis and inflammation in hepatocytes via cytokine secretion. We identified 2 downstream transcriptional targets of Osr1, c-Myc, and PPARγ and established the Osr1-PPARγ cascade in macrophage polarization and liver inflammation by genetic study and rosiglitazone treatment in vivo. We tested a promising intervention strategy targeting Osr1-PPARγ by AAV8L-delivered Osr1 expression or rosiglitazone that significantly repressed NAFLD/NASH progression in Osr1F and Osr1ΔMφ mice. CONCLUSIONS: Myeloid Osr1 mediates liver immune homeostasis and disrupting Osr1 aggravates the progression of NAFLD/NASH.


Assuntos
Hepatite , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatite/patologia , Inflamação/patologia , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , PPAR gama/metabolismo , Rosiglitazona
4.
Development ; 149(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36227576

RESUMO

The tongue is a highly specialized muscular organ with diverse cellular origins, which provides an excellent model for understanding mechanisms controlling tissue-tissue interactions during organogenesis. Previous studies showed that SHH signaling is required for tongue morphogenesis and tongue muscle organization, but little is known about the underlying mechanisms. Here we demonstrate that the Foxf1/Foxf2 transcription factors act in the cranial neural crest cell (CNCC)-derived mandibular mesenchyme to control myoblast migration into the tongue primordium during tongue initiation, and thereafter continue to regulate intrinsic tongue muscle assembly and lingual tendon formation. We performed chromatin immunoprecipitation sequencing analysis and identified Hgf, Tgfb2 and Tgfb3 among the target genes of Foxf2 in the embryonic tongue. Through genetic analyses of mice with CNCC-specific inactivation of Smo or both Foxf1 and Foxf2, we show that Foxf1 and Foxf2 mediate hedgehog signaling-mediated regulation of myoblast migration during tongue initiation and intrinsic tongue muscle formation by regulating the activation of the HGF and TGFß signaling pathways. These data uncover the molecular network integrating the SHH, HGF and TGFß signaling pathways in regulating tongue organogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog , Camundongos , Animais , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Organogênese/genética , Língua , Transdução de Sinais/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
5.
Curr Top Dev Biol ; 148: 13-50, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35461563

RESUMO

Cleft lip and cleft palate are common birth defects resulting from genetic and/or environmental perturbations of facial development in utero. Facial morphogenesis commences during early embryogenesis, with cranial neural crest cells interacting with the surface ectoderm to form initially partly separate facial primordia consisting of the medial and lateral nasal prominences, and paired maxillary and mandibular processes. As these facial primordia grow around the primitive oral cavity and merge toward the ventral midline, the surface ectoderm undergoes a critical differentiation step to form an outer layer of flattened and tightly connected periderm cells with a non-stick apical surface that prevents epithelial adhesion. Formation of the upper lip and palate requires spatiotemporally regulated inter-epithelial adhesions and subsequent dissolution of the intervening epithelial seam between the maxillary and medial/lateral nasal processes and between the palatal shelves. Proper regulation of epithelial integrity plays a paramount role during human facial development, as mutations in genes encoding epithelial adhesion molecules and their regulators have been associated with syndromic and non-syndromic orofacial clefts. In this chapter, we summarize mouse genetic studies that have been instrumental in unraveling the mechanisms regulating epithelial integrity and periderm differentiation during facial and palate development. Since proper epithelial integrity also plays crucial roles in wound healing and cancer, understanding the mechanisms regulating epithelial integrity during facial development have direct implications for improvement in clinical care of craniofacial patients.


Assuntos
Fenda Labial , Fissura Palatina , Animais , Fenda Labial/genética , Fissura Palatina/genética , Modelos Animais de Doenças , Ectoderma , Humanos , Camundongos , Morfogênese , Palato
6.
Front Cell Dev Biol ; 10: 777887, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35127681

RESUMO

Loss of ALX1 function causes the frontonasal dysplasia syndrome FND3, characterized by severe facial clefting and microphthalmia. Whereas the laboratory mouse has been the preeminent animal model for studying developmental mechanisms of human craniofacial birth defects, the roles of ALX1 in mouse frontonasal development have not been well characterized because the only previously reported Alx1 mutant mouse line exhibited acrania due to a genetic background-dependent failure of cranial neural tube closure. Using CRISPR/Cas9-mediated genome editing, we have generated an Alx1-deletion mouse model that recapitulates the FND craniofacial malformations, including median orofacial clefting and disruption of development of the eyes and alae nasi. In situ hybridization analysis showed that Alx1 is strongly expressed in frontonasal neural crest cells that give rise to periocular and frontonasal mesenchyme. Alx1 del/del embryos exhibited increased apoptosis of periocular mesenchyme and decreased expression of ocular developmental regulators Pitx2 and Lmxb1 in the periocular mesenchyme, followed by defective optic stalk morphogenesis. Moreover, Alx1 del/del embryos exhibited disruption of frontonasal mesenchyme identity, with loss of expression of Pax7 and concomitant ectopic expression of the jaw mesenchyme regulators Lhx6 and Lhx8 in the developing lateral nasal processes. The function of ALX1 in patterning the frontonasal mesenchyme is partly complemented by ALX4, a paralogous ALX family transcription factor whose loss-of-function causes a milder and distinctive FND. Together, these data uncover previously unknown roles of ALX1 in periocular mesenchyme development and frontonasal mesenchyme patterning, providing novel insights into the pathogenic mechanisms of ALX1-related FND.

7.
Genesis ; 58(7): e23365, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32277572

RESUMO

Heterozygous deletion of Six2, which encodes a member of sine oculis homeobox family transcription factors, has recently been associated with the frontonasal dysplasia syndrome FND4. Previous studies showed that Six2 is expressed in multiple tissues during craniofacial development in mice, including embryonic head mesoderm, postmigratory frontonasal neural crest cells, and epithelial and mesenchymal cells of the developing palate and nasal structures. Whereas Six2 -/- mice exhibited cranial base defects but did not recapitulate frontonasal phenotypes of FND4 patients, Six1 -/- Six2 -/- double mutant mice showed severe craniofacial defects including midline facial clefting. The complex phenotypes of FND4 patients and of Six1 -/- Six2 -/- mutant mice indicate that Six2 plays crucial roles in distinct cell types at multiple stages of craniofacial morphogenesis. Here we report generation of mice carrying insertions of a pair of loxP sites flanking exon-1 of the Six2 gene (Six2 f allele) using CRISPR/Cas9-mediated genome editing. We show that the Six2 f allele functions normally and is effectively inactivated by Cre-mediated recombination in vivo. Furthermore, we show that Six2 f/f ;Wnt1-Cre mice recapitulated cranial base defects but not neonatal lethality of Six2 -/- mice. These results indicate that Six2 f/f mice enable systematic investigation of cell type- and stage-specific Six2 function in development and disease.


Assuntos
Anormalidades Craniofaciais/genética , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Animais , Sistemas CRISPR-Cas , Anormalidades Craniofaciais/patologia , Feminino , Edição de Genes/métodos , Marcação de Genes/métodos , Proteínas de Homeodomínio/metabolismo , Integrases/genética , Integrases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Fatores de Transcrição/metabolismo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
8.
J Bone Miner Res ; 34(3): 557-569, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30458056

RESUMO

Heterotopic ossification is the abnormal formation of mineralized bone in skin, muscle, tendon, or other soft tissues. Tendon ossification often occurs from acute tendon injury or chronic tendon degeneration, for which current treatment relies heavily on surgical removal of the ectopic bony tissues. Unfortunately, surgery creates additional trauma, which often causes recurrence of heterotopic ossification. The molecular mechanisms of heterotopic ossification are not well understood. Previous studies demonstrate that Mkx is a transcription factor crucial for postnatal tendon fibril growth. Here we report that Mkx-/- mutant mice exhibit ectopic ossification in the Achilles tendon within 1 month after birth and the tendon ossification deteriorates with age. Genetic lineage labeling revealed that the tendon ossification in Mkx-/- mice resulted from aberrant differentiation of tendon progenitor cells. Furthermore, tissue-specific inactivation of Mkx in tendon cells postnatally resulted in a similar ossification phenotype, indicating that Mkx plays a key role in tendon tissue homeostasis. Moreover, we show that Hedgehog signaling is ectopically activated at early stages of tendon ossification and that tissue-specific inactivation of Smoothened, which encodes the obligatory transducer of Hedgehog signaling, in the tendon cell lineage prevented or dramatically reduced tendon ossification in Mkx-/- mice. Together, these studies establish a new genetic mouse model of tendon ossification and provide new insight into its pathogenic mechanisms. © 2018 American Society for Bone and Mineral Research.


Assuntos
Tendão do Calcâneo/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas de Resistência a Myxovirus/deficiência , Ossificação Heterotópica/metabolismo , Transdução de Sinais , Tendão do Calcâneo/patologia , Animais , Proteínas Hedgehog/genética , Camundongos , Camundongos Knockout , Proteínas de Resistência a Myxovirus/metabolismo , Ossificação Heterotópica/genética , Ossificação Heterotópica/patologia , Receptor Smoothened/genética , Receptor Smoothened/metabolismo
9.
Dev Biol ; 427(1): 72-83, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28501478

RESUMO

During early fetal development, paracrine Hedgehog (HH) ligands secreted from the foregut epithelium activate Gli transcription factors in the surrounding mesenchyme to coordinate formation of the respiratory system, digestive track and the cardiovascular network. Although disruptions to this process can lead to devastating congenital defects, the underlying mechanisms and downstream targets, are poorly understood. We show that the zinc finger transcription factor Osr1 is a novel HH target as Osr1 expression in the foregut mesenchyme depends on HH signaling and the effector of HH pathway Gli3 binds to a conserved genomic loci near Osr1 promoter region. Molecular analysis of mouse germline Osr1 mutants reveals multiple functions of Osr1 during foregut development. Osr1 mutants exhibit fewer lung progenitors in the ventral foregut. Osr is then required for the proper branching of the primary lung buds, with mutants exhibiting miss-located lung lobes. Finally, Osr1 is essential for proper mesenchymal differentiation including pulmonary arteries, esophageal and tracheal smooth muscle as well as tracheal cartilage rings. Tissue specific conditional knockouts in combination with lineage tracing indicate that Osr1 is required cell autonomously in the foregut mesenchyme. We conclude that Osr1 is a novel downstream target of HH pathway, required for lung specification, branching morphogenesis and foregut mesenchymal differentiation.


Assuntos
Sistema Digestório/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Organogênese/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Animais , Sistema Digestório/embriologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Proteínas Hedgehog/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Pulmão/embriologia , Pulmão/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição/metabolismo , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco
10.
Curr Top Dev Biol ; 115: 59-84, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26589921

RESUMO

Palatogenesis involves the initiation, growth, morphogenesis, and fusion of the primary and secondary palatal shelves from initially separate facial prominences during embryogenesis to form the intact palate separating the oral cavity from the nostrils. The palatal shelves consist mainly of cranial neural crest-derived mesenchymal cells covered by a simple embryonic epithelium. The growth and patterning of the palatal shelves are controlled by reciprocal epithelial-mesenchymal interactions regulated by multiple signaling pathways and transcription factors. During palatal shelf outgrowth, the embryonic epithelium develops a "teflon" coat consisting of a single, continuous layer of periderm cells that prevents the facial prominences and palatal shelves from forming aberrant interepithelial adhesions. Palatal fusion involves not only spatiotemporally regulated disruption of the periderm but also dynamic cellular and molecular processes that result in adhesion and intercalation of the palatal medial edge epithelia to form an intershelf epithelial seam, and subsequent dissolution of the epithelial seam to form the intact roof of the oral cavity. The complexity of regulation of these morphogenetic processes is reflected by the common occurrence of cleft palate in humans. This review will summarize major recent advances and discuss major remaining gaps in the understanding of cellular and molecular mechanisms controlling palatogenesis.


Assuntos
Epitélio/embriologia , Morfogênese , Palato/embriologia , Transdução de Sinais , Animais , Diferenciação Celular/genética , Células Epiteliais/metabolismo , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Modelos Biológicos , Palato/citologia , Palato/metabolismo
11.
Dev Biol ; 405(1): 96-107, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26141957

RESUMO

The sequence of events that leads to the formation of a functionally graded enthesis is not clearly defined. The current study demonstrates that clonal expansion of Gdf5 progenitors contributes to linear growth of the enthesis. Prior to mineralization, Col1+ cells in the enthesis appose Col2+ cells of the underlying primary cartilage. At the onset of enthesis mineralization, cells at the base of the enthesis express alkaline phosphatase, Indian hedgehog, and ColX as they mineralize. The mineralization front then extends towards the tendon midsubstance as cells above the front become encapsulated in mineralized fibrocartilage over time. The hedgehog (Hh) pathway regulates this process, as Hh-responsive Gli1+ cells within the developing enthesis mature from unmineralized to mineralized fibrochondrocytes in response to activated signaling. Hh signaling is required for mineralization, as tissue-specific deletion of its obligate transducer Smoothened in the developing tendon and enthesis cells leads to significant reductions in the apposition of mineralized fibrocartilage. Together, these findings provide a spatiotemporal map of events - from expansion of the embryonic progenitor pool to synthesis of the collagen template and finally mineralization of this template - that leads to the formation of the mature zonal enthesis. These results can inform future tendon-to-bone repair strategies to create a mechanically functional enthesis in which tendon collagen fibers are anchored to bone through mineralized fibrocartilage.


Assuntos
Fibrocartilagem/citologia , Fator 5 de Diferenciação de Crescimento/metabolismo , Proteínas Hedgehog/metabolismo , Minerais/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Animais , Medula Óssea/patologia , Reabsorção Óssea/patologia , Reabsorção Óssea/fisiopatologia , Osso e Ossos/fisiologia , Calcificação Fisiológica , Diferenciação Celular , Condrócitos/metabolismo , Células Clonais , Colágeno/metabolismo , Epífises/patologia , Integrases/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Modelos Biológicos , Osteoclastos/metabolismo , Patela/fisiologia , Coloração e Rotulagem , Células-Tronco/metabolismo , Tendões/fisiologia , Proteína GLI1 em Dedos de Zinco
12.
PLoS One ; 7(6): e39406, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22761782

RESUMO

BACKGROUND: BAMBI is a type I TGFß receptor antagonist, whose in vivo function remains unclear, as BAMBI(-/-) mice lack an obvious phenotype. METHODOLOGY/PRINCIPAL FINDINGS: Identifying BAMBI's functions requires identification of cell-specific expression of BAMBI. By immunohistology we found BAMBI expression restricted to endothelial cells and by electron microscopy BAMBI(-/-) mice showed prominent and swollen endothelial cells in myocardial and glomerular capillaries. In endothelial cells over-expression of BAMBI reduced, whereas knock-down enhanced capillary growth and migration in response to TGFß. In vivo angiogenesis was enhanced in matrigel implants and in glomerular hypertrophy after unilateral nephrectomy in BAMBI(-/-) compared to BAMBI(+/+) mice consistent with an endothelial phenotype for BAMBI(-/-) mice. BAMBI's mechanism of action in endothelial cells was examined by canonical and alternative TGFß signaling in HUVEC with over-expression or knock-down of BAMBI. BAMBI knockdown enhanced basal and TGFß stimulated SMAD1/5 and ERK1/2 phosphorylation, while over-expression prevented both. CONCLUSIONS/SIGNIFICANCE: Thus we provide a first description of a vascular phenotype for BAMBI(-/-) mice, and provide in vitro and in vivo evidence that BAMBI contributes to endothelial and vascular homeostasis. Further, we demonstrate that in endothelial cells BAMBI interferes with alternative TGFß signaling, most likely through the ALK 1 receptor, which may explain the phenotype observed in BAMBI(-/-) mice. This newly described role for BAMBI in regulating endothelial function has potential implications for understanding and treating vascular disease and tumor neo-angiogenesis.


Assuntos
Células Endoteliais/metabolismo , Homeostase/fisiologia , Proteínas de Membrana/metabolismo , Neovascularização Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Movimento Celular/fisiologia , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Glomérulos Renais/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Nefrectomia , Fosforilação
13.
Development ; 139(13): 2330-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22669823

RESUMO

Development of the metanephric kidney in mammals requires complex reciprocal tissue interactions between the ureteric epithelium and the mesenchyme. It is believed that Gdnf, produced in the metanephric mesenchyme, activates Ret signaling in the Wolffian duct to initiate the formation of the metanephros. However, the molecular mechanism for induction of Gdnf in the metanephric mesenchyme is not completely defined. Previous studies demonstrated that during the early stages of kidney development, loss of Osr1, Eya1, Pax2 or Wt1 gene function in the metanephric mesenchyme compromises the formation of the kidney. Moreover, it has been shown that the Hox11-Eya1-Pax2 complex activates the expression of Six2 and Gdnf in the metanephric mesenchyme to drive nephrogenesis. Here, we demonstrate that the orphan nuclear receptor chicken ovalbumin upstream promoter transcription factor II (COUP-TFII, also known as Nr2f2) is required for the specification of the metanephric mesenchyme. Deletion of COUP-TFII at E7.5 results in improper differentiation of the metanephric mesenchyme and absence of essential developmental regulators, such as Eya1, Six2, Pax2 and Gdnf. Importantly, we show that COUP-TFII directly regulates the expression of both Eya1 and Wt1 in the metanephric mesenchyme. Our findings reveal, for the first time, that COUP-TFII plays a central role in the specification of metanephric fate and in the maintenance of metanephric mesenchyme proliferation and survival by acting as a crucial regulator of Eya1 and Wt1 expression.


Assuntos
Fator II de Transcrição COUP/fisiologia , Rim/crescimento & desenvolvimento , Células-Tronco Mesenquimais/fisiologia , Mesoderma/crescimento & desenvolvimento , Animais , Fator II de Transcrição COUP/genética , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Desenvolvimento Embrionário , Feminino , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Fator Neurotrófico Derivado de Linhagem de Célula Glial/análise , Proteínas de Homeodomínio/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular , Rim/metabolismo , Masculino , Mesoderma/metabolismo , Camundongos , Proteínas Nucleares/biossíntese , Organogênese/fisiologia , Fator de Transcrição PAX2/análise , Gravidez , Proteínas Tirosina Fosfatases/biossíntese , Fatores de Transcrição/biossíntese
14.
Dev Biol ; 353(2): 344-53, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21420399

RESUMO

Mammalian tooth development depends on activation of odontogenic potential in the presumptive dental mesenchyme by the Msx1 and Pax9 transcription factors. We recently reported that the zinc finger transcription factor Osr2 was expressed in a lingual-to-buccal gradient pattern surrounding the developing mouse molar tooth germs and mice lacking Osr2 developed supernumerary teeth lingual to their molars. We report here generation of a gene-targeted mouse strain that allows conditional inactivation of Pax9 and subsequent activation of expression of Osr2 in the developing tooth mesenchyme from the Pax9 locus. Expression of Osr2 from one copy of the Pax9 gene did not disrupt normal tooth development but was sufficient to suppress supernumerary tooth formation in the Osr2(-/-) mutant mice. We found that endogenous Osr2 mRNA expression was significantly downregulated in the developing tooth mesenchyme in Pax9(del/del) mice. Mice lacking both Osr2 and Pax9 exhibited early tooth developmental arrest with significantly reduced Bmp4 and Msx1 mRNA expression in the developing tooth mesenchyme, similar to that in Pax9(del/del) mutants but in contrast to the rescue of tooth morphogenesis in Msx1(-/-)Osr2(-/-) double mutant mice. Furthermore, we found that Osr2 formed stable protein complexes with the Msx1 protein and interacted weakly with the Pax9 protein in co-transfected cells. These data indicate that Osr2 acts downstream of Pax9 and patterns the mesenchymal odontogenic field through protein-protein interactions with Msx1 and Pax9 during early tooth development.


Assuntos
Fator de Transcrição MSX1/fisiologia , Odontogênese/fisiologia , Fatores de Transcrição Box Pareados/fisiologia , Fatores de Transcrição/fisiologia , Animais , Sequência de Bases , Proteína Morfogenética Óssea 4/genética , DNA/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Fator de Transcrição MSX1/deficiência , Fator de Transcrição MSX1/genética , Masculino , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Odontogênese/genética , Fator de Transcrição PAX9 , Fatores de Transcrição Box Pareados/deficiência , Fatores de Transcrição Box Pareados/genética , Gravidez , Mapeamento de Interação de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Germe de Dente/embriologia , Germe de Dente/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
15.
Development ; 136(8): 1387-96, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19304890

RESUMO

The mammalian secondary palate arises by outgrowth from the oral side of the paired maxillary processes flanking the primitive oral cavity. Palatal growth depends on reciprocal interactions between the oral ectoderm and the underlying neural-crest-derived mesenchyme. Previous studies have implicated sonic hedgehog (Shh) as an important epithelial signal for regulating palatal growth. However, the cellular and molecular mechanisms through which Shh regulates palatal development in vivo have not been directly analyzed, due in part to early embryonic lethality of mice lacking Shh or other essential components of the Shh signaling pathway. Using Cre/loxP-mediated tissue-specific inactivation of the smoothened (Smo) gene in the developing palatal mesenchyme, we show that the epithelially expressed Shh signals directly to the palatal mesenchyme to regulate palatal mesenchyme cell proliferation through maintenance of cyclin D1 (Ccnd1) and Ccnd2 expression. Moreover, we show that Shh-Smo signaling specifically regulates the expression of the transcription factors Foxf1a, Foxf2 and Osr2 in the developing palatal mesenchyme. Furthermore, we show that Shh signaling regulates Bmp2, Bmp4 and Fgf10 expression in the developing palatal mesenchyme and that specific inactivation of Smo in the palatal mesenchyme indirectly affects palatal epithelial cell proliferation. Together with previous reports that the mesenchymally expressed Fgf10 signals to the palatal epithelium to regulate Shh mRNA expression and cell proliferation, these data demonstrate that Shh signaling plays a central role in coordinating the reciprocal epithelial-mesenchymal interactions controlling palatal outgrowth.


Assuntos
Células Epiteliais/metabolismo , Proteínas Hedgehog/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Palato/embriologia , Palato/metabolismo , Transdução de Sinais , Animais , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Proliferação de Células , Ciclina D1/metabolismo , Ciclina D2 , Ciclinas/metabolismo , Células Epiteliais/citologia , Fator 10 de Crescimento de Fibroblastos/genética , Fator 10 de Crescimento de Fibroblastos/metabolismo , Proteínas Hedgehog/genética , Integrases/genética , Integrases/metabolismo , Mesoderma/citologia , Camundongos , Mutação/genética
16.
Development ; 135(23): 3959-68, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18948418

RESUMO

The mammalian secondary palate exhibits morphological, pathological and molecular heterogeneity along the anteroposterior axis. Although the cell proliferation rates are similar in the anterior and posterior regions during palatal outgrowth, previous studies have identified several signaling pathways and transcription factors that specifically regulate the growth of the anterior palate. By contrast, no factor has been shown to preferentially regulate posterior palatal growth. Here, we show that mice lacking the transcription factor Mn1 have defects in posterior but not anterior palatal growth. We show that Mn1 mRNA exhibits differential expression along the anteroposterior axis of the developing secondary palate, with preferential expression in the middle and posterior regions during palatal outgrowth. Extensive analyses of palatal gene expression in wild-type and Mn1(-/-) mutant mice identified Tbx22, the mouse homolog of the human X-linked cleft palate gene, as a putative downstream target of Mn1 transcriptional activation. Tbx22 exhibits a similar pattern of expression with that of Mn1 along the anteroposterior axis of the developing palatal shelves and its expression is specifically downregulated in Mn1(-/-) mutants. Moreover, we show that Mn1 activated reporter gene expression driven by either the human or mouse Tbx22 gene promoters in co-transfected NIH3T3 cells. Overexpression of Mn1 in NIH3T3 cells also increased endogenous Tbx22 mRNA expression in a dose-dependent manner. These data indicate that Mn1 and Tbx22 function in a novel molecular pathway regulating mammalian palate development.


Assuntos
Padronização Corporal , Proteínas Oncogênicas/metabolismo , Palato/embriologia , Palato/metabolismo , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Animais , Apoptose , Proliferação de Células , Ciclina D2 , Ciclinas/genética , Ciclinas/metabolismo , Regulação para Baixo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Células NIH 3T3 , Proteínas Oncogênicas/deficiência , Proteínas Oncogênicas/genética , Palato/anormalidades , Palato/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transativadores/metabolismo , Proteínas Supressoras de Tumor
17.
Blood ; 104(10): 3097-105, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15251982

RESUMO

Notch1 is known to play a critical role in regulating fates in numerous cell types, including those of the hematopoietic lineage. Multiple defects exhibited by Notch1-deficient embryos confound the determination of Notch1 function in early hematopoietic development in vivo. To overcome this limitation, we examined the developmental potential of Notch1(-/-) embryonic stem (ES) cells by in vitro differentiation and by in vivo chimera analysis. Notch1 was found to affect primitive erythropoiesis differentially during ES cell differentiation and in vivo, and this result reflected an important difference in the regulation of Notch1 expression during ES cell differentiation relative to the developing mouse embryo. Notch1 was dispensable for the onset of definitive hematopoiesis both in vitro and in vivo in that Notch1(-/-) definitive progenitors could be detected in differentiating ES cells as well as in the yolk sac and early fetal liver of chimeric mice. Despite the fact that Notch1(-/-) cells can give rise to multiple types of definitive progenitors in early development, Notch1(-/-) cells failed to contribute to long-term definitive hematopoiesis past the early fetal liver stage in the context of a wild-type environment in chimeric mice. Thus, Notch1 is required, in a cell-autonomous manner, for the establishment of long-term, definitive hematopoietic stem cells (HSCs).


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Células-Tronco Hematopoéticas/citologia , Óperon Lac , Fígado/citologia , Fígado/embriologia , Mesoderma/citologia , Camundongos , Camundongos Endogâmicos , Camundongos Mutantes , Receptor Notch1 , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Saco Vitelino/citologia , Saco Vitelino/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA