Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Cell Rep Med ; 4(10): 101222, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37794586

RESUMO

Sporadic synchronous colorectal cancer (SCRC) refers to multiple primary CRC tumors detected simultaneously in an individual without predisposing hereditary conditions, which accounts for the majority of multiple CRCs while lacking a profound understanding of the genomic landscape and evolutionary dynamics to optimize its treatment. In this study, 103 primary tumor samples from 51 patients with SCRC undergo whole-exome sequencing. The germline and somatic mutations and evolutionary and clinical features are comprehensively investigated. Somatic genetic events are largely inconsistent between paired tumors. Compared with solitary CRC, SCRCs have higher prevalence of tumor mutation burden high (TMB-H; 33.3%) and microsatellite-instability high (MSI-H; 29.4%) and different mutation frequencies in oncogenic signaling pathways. Moreover, neutrally evolving SCRC tumors are associated with higher intratumoral heterogeneity and better prognosis. These findings unveil special molecular features, carcinogenesis, and prognosis of sporadic SCRC. Strategies for targeted therapy and immunotherapy should be optimized accordingly.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Instabilidade de Microssatélites , Prognóstico , Biomarcadores Tumorais/genética , Genômica
2.
Lipids Health Dis ; 22(1): 134, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612751

RESUMO

BACKGROUND: Anlotinib has demonstrated encouraging clinical outcomes in the treatment of lung cancer, soft tissue sarcoma and thyroid carcinoma. Several clinical studies have shown a relationship between anlotinib treatment and the occurrence of hyperlipidemia. The fundamental mechanisms, however, are still largely unclear. Here, the effect of anlotinib on lipid metabolism in an animal model and human cancer cells was evaluated and the role of lipid metabolism in the antitumor efficacy of anlotinib was investigated. METHODS: The C57BL/6 J mouse model as well as A549 and H460 human lung cancer cell lines were used to examine the impact of anlotinib on lipid metabolism both in vivo and in vitro. Levels of triglycerides, high-density lipoprotein, low-density lipoprotein (LDL), and total cholesterol in serum or cell samples were determined using assay kits. The expression levels of crucial genes and proteins involved in lipid metabolism were measured by quantitative RT-PCR and Western blotting. Furthermore, exogenous LDL and knockdown of low-density lipoprotein receptor (LDLR) were used in H460 cells to investigate the relevance of lipid metabolism in the anticancer efficacy of anlotinib. RESULTS: Anlotinib caused hyperlipidemia in C57BL/6 J mice, possibly by downregulating hepatic LDLR-mediated uptake of LDL cholesterol. AMP-activated protein kinase and mammalian target of rapamycin inhibition may also be involved. Additionally, anlotinib enhanced sterol response element binding protein 1/2 nuclear accumulation as well as upregulated LDLR expression in A549 and H460 cells, which may be attributable to intracellular lipid accumulation. Knockdown of LDLR reduced intracellular cholesterol content, but interestingly, anlotinib significantly improved intracellular cholesterol accumulation in LDLR-knockdown cells. Both exogenous LDL and LDLR knockdown decreased the sensitivity of cells to anlotinib. CONCLUSIONS: Anlotinib modulates host lipid metabolism through multiple pathways. Anlotinib also exerts a significant impact on lipid metabolism in cancer cells by regulating key transcription factors and metabolic enzymes. In addition, these findings suggest lipid metabolism is implicated in anlotinib sensitivity.


Assuntos
Metabolismo dos Lipídeos , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Camundongos Endogâmicos C57BL , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , LDL-Colesterol , Mamíferos
3.
Brain Sci ; 13(4)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37190607

RESUMO

Previously, we reported that H157Y, a rare coding variant on exon 3 of the triggering receptor expressed on myeloid cells 2 gene (TREM2), was associated with Alzheimer's disease (AD) risk in a Han Chinese population. To date, how this variant increases AD risk has remained unclear. In this study, using CRISPR-Cas9-engineered BV2 microglia, we tried to investigate the influence of the Trem2 H157Y variant on AD-related microglial functions. For the first time, we revealed that the Trem2 H157Y variant inhibits microglial phagocytosis of amyloid-ß, promotes M1-type polarization of microglia, and facilitates microglial release of inflammatory cytokines, including interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α. These findings provide new insights into the cellular mechanisms by which the TREM2 H157Y variant elevates the risk of AD.

4.
Neural Regen Res ; 18(1): 189-193, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35799541

RESUMO

Lamotrigine (LTG) is a widely used drug for the treatment of epilepsy. Emerging clinical evidence suggests that LTG may improve cognitive function in patients with Alzheimer's disease. However, the underlying molecular mechanisms remain unclear. In this study, amyloid precursor protein/presenilin 1 (APP/PS1) double transgenic mice were used as a model of Alzheimer's disease. Five-month-old APP/PS1 mice were intragastrically administered 30 mg/kg LTG or vehicle once per day for 3 successive months. The cognitive functions of animals were assessed using Morris water maze. Hyperphosphorylated tau and markers of synapse and glial cells were detected by western blot assay. The cell damage in the brain was investigated using hematoxylin and eosin staining. The levels of amyloid-ß and the concentrations of interleukin-1ß, interleukin-6 and tumor necrosis factor-α in the brain were measured using enzyme-linked immunosorbent assay. Differentially expressed genes in the brain after LTG treatment were analyzed by high-throughput RNA sequencing and real-time polymerase chain reaction. We found that LTG substantially improved spatial cognitive deficits of APP/PS1 mice; alleviated damage to synapses and nerve cells in the brain; and reduced amyloid-ß levels, tau protein hyperphosphorylation, and inflammatory responses. High-throughput RNA sequencing revealed that the beneficial effects of LTG on Alzheimer's disease-related neuropathologies may have been mediated by the regulation of Ptgds, Cd74, Map3k1, Fosb, and Spp1 expression in the brain. These findings revealed potential molecular mechanisms by which LTG treatment improved Alzheimer's disease. Furthermore, these data indicate that LTG may be a promising therapeutic drug for Alzheimer's disease.

5.
Mol Neurobiol ; 60(1): 317-328, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36264433

RESUMO

Emerging evidence suggested that long non-coding RNAs (lncRNAs) were involved in Parkinson's disease (PD) pathogenesis. Herein, we used gene expression profiles from GEO database to construct a PD-specific ceRNA network. Functional enrichment analysis suggested that ceRNA network might participate in the development of PD. PPI networks were constructed, and the ceRNA subnetwork based on five hub genes was set up. In a cohort of 32 PD patients and 31 healthy controls, the expression of 10 DElncRNAs (TTC3-AS1, LINC01259, ZMYND10-AS1, CHRM3-AS1, MYO16-AS1, AGBL5-IT1, HOTAIRM1, RABGAP1L-IT1, HLCS-IT1, and LINC00393) were further verified. Consistent with the microarray data, LINC01259 expression was significantly lower in PD patients compared with controls (P = 0.008). Intriguingly, such a difference was only observed among male patients and male controls when dividing study participants based on their gender (P = 0.016). However, the expression of other lncRNAs did not differ significantly between the two groups. Receiver operating characteristic (ROC) curve analysis revealed that the diagnostic power of LINC01259 was 0.694 for PD and 0.677 for early-stage PD. GSEA enrichment analysis revealed that LINC01259 was mainly enriched in biological processes associated with immune function and inflammatory response. Moreover, LINC01259 expression was not correlated with age of patients, disease duration, disease stage, MDS-UPDRS score, MDS-UPDRS III score, MMSE score, and MOCA score. The current study provides further evidence for the dysregulation of lncRNAs in circulating leukocytes of PD patients, revealing that LINC01259 has clinical potential as a novel immune and inflammatory biomarker for PD and early-stage PD diagnosis.


Assuntos
Doença de Parkinson , RNA Longo não Codificante , Humanos , Masculino , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Doença de Parkinson/genética , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Feminino
6.
Neural Regen Res ; 18(2): 434-438, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35900442

RESUMO

Triggering receptor expressed on myeloid cells-like 2 (TREML2) is a newly identified susceptibility gene for Alzheimer's disease (AD). It encodes a microglial inflammation-associated receptor. To date, the potential role of microglial TREML2 in neuroinflammation in the context of AD remains unclear. In this study, APP/PS1 mice were used to investigate the dynamic changes of TREML2 levels in brain during AD progression. In addition, lipopolysaccharide (LPS) stimulation of primary microglia as well as a lentivirus-mediated TREML2 overexpression and knockdown were employed to explore the role of TREML2 in neuroinflammation in the context of AD. Our results show that TREML2 levels gradually increased in the brains of APP/PS1 mice during disease progression. LPS stimulation of primary microglia led to the release of inflammatory cytokines including interleukin-1ß, interleukin-6, and tumor necrosis factor-α in the culture medium. The LPS-induced microglial release of inflammatory cytokines was enhanced by TREML2 overexpression and was attenuated by TREML2 knockdown. LPS increased the levels of microglial M1-type polarization marker inducible nitric oxide synthase. This effect was enhanced by TREML2 overexpression and ameliorated by TREML2 knockdown. Furthermore, the levels of microglial M2-type polarization markers CD206 and ARG1 in the primary microglia were reduced by TREML2 overexpression and elevated by TREML2 knockdown. LPS stimulation increased the levels of NLRP3 in primary microglia. The LPS-induced increase in NLRP3 was further elevated by TREML2 overexpression and alleviated by TREML2 knockdown. In summary, this study provides the first evidence that TREML2 modulates inflammation by regulating microglial polarization and NLRP3 inflammasome activation. These findings reveal the mechanisms by which TREML2 regulates microglial inflammation and suggest that TREML2 inhibition may represent a novel therapeutic strategy for AD.

7.
EBioMedicine ; 84: 104275, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36152520

RESUMO

BACKGROUND: Thrombo-inflammation is an important checkpoint that orchestrates infarct development in ischemic stroke. However, the underlying mechanism remains largely unknown. Here, we explored the role of endothelial Caveolin-1 (Cav-1) in cerebral thrombo-inflammation. METHODS: The correlation between serum Cav-1 level and clinical outcome was analyzed in acute ischemic stroke patients with successful recanalization. Genetic manipulations by endothelial-specific adeno-associated virus (AAV) and siRNA were applied to investigate the effects of Cav-1 in thrombo-inflammation in a transient middle cerebral artery occlusion (tMCAO) model. Thrombo-inflammation was analyzed by microthrombosis formation, myeloid cell infiltration, and endothelial expression of adhesion molecules as well as inflammatory factors. FINDINGS: Reduced circulating Cav-1, with the potential to predict microembolic signals, was more frequently detected in recanalized stroke patients without early neurological improvement. At 24 h after tMCAO, serum Cav-1 was consistently reduced in mice. Endothelial Cav-1 was decreased in the peri-infarct region. Cav-1-/- endothelium, with prominent barrier disruption, displayed extensive microthrombosis, accompanied by increased myeloid cell inflammatory infiltration after tMCAO. Specific enhanced expression of endothelial Cav-1 by AAV-Tie1-Cav-1 remarkably reduced infarct volume, attenuated vascular hyper-permeability and alleviated thrombo-inflammation in both wild-type and Cav-1-/- tMCAO mice. Transcriptome analysis after tMCAO further designated Rxrg as the most significantly changed molecule resulting from the knockdown of Cav-1. Supplementation of RXR-γ siRNA reversed AAV-Tie1-Cav-1-induced amelioration of thrombo-inflammation without affecting endothelial tight junction. INTERPRETATION: Endothelial Cav-1/RXR-γ may regulate infarct volume and neurological impairment, possibly through selectively controlling thrombo-inflammation coupling, in cerebral ischemia/reperfusion. FUNDING: This work was supported by National Natural Science Foundation of China.


Assuntos
AVC Isquêmico , Traumatismo por Reperfusão , Trombose , Animais , Caveolina 1/genética , Caveolina 1/metabolismo , Endotélio/metabolismo , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/genética , Inflamação/metabolismo , AVC Isquêmico/genética , AVC Isquêmico/terapia , Camundongos , RNA Interferente Pequeno , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo
8.
Sci Rep ; 12(1): 13080, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906371

RESUMO

With the development and progress of nanotechnology, the prospect of using nanorobots to achieve targeted drug delivery is becoming possible. Although nanorobots can potentially improve nano-drug delivery systems, there remains a significant challenge to fabricating magnetically controllable nanorobots with a size suitable for drug delivery in complex in vivo environments. Most of the current research focused on the preparation and functionalization of microscale and milliscale robots due to the relative difficulties in fabricating nanoscale robots. To address this problem and move towards in vivo applications, this study uses electron beam lithography to fabricate achiral planar L-shaped nanorobots that are biocompatible with immune cells. Their minimal planar geometry enabled nanolithography to fabricate nanorobots with a minimum feature size down to 400 nm. Using an integrated imaging and control system, the locomotive behavior of the L-shaped nanorobots in a fluidic environment was studied by examining their velocity profiles and trajectories. Furthermore, the nanorobots exhibit excellent cell compatibility with various types of cells, including macrophage cells. Finally, the long-term cell culture medium immersion test demonstrated that the L-shaped nanorobots have robust stability. This work will demonstrate the potential to use these nanorobots to operate in vivo without triggering immune cell responses.


Assuntos
Elétrons , Nanotecnologia , Sistemas de Liberação de Medicamentos , Macrófagos , Magnetismo
9.
Nat Commun ; 13(1): 2342, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35487942

RESUMO

The genetic basis of colorectal cancer (CRC) and its clinical associations remain poorly understood due to limited samples or targeted genes in current studies. Here, we perform ultradeep whole-exome sequencing on 1015 patients with CRC as part of the ChangKang Project. We identify 46 high-confident significantly mutated genes, 8 of which mutate in 14.9% of patients: LYST, DAPK1, CR2, KIF16B, NPIPB15, SYTL2, ZNF91, and KIAA0586. With an unsupervised clustering algorithm, we propose a subtyping strategy that classisfies CRC patients into four genomic subtypes with distinct clinical characteristics, including hypermutated, chromosome instability with high risk, chromosome instability with low risk, and genome stability. Analysis of immunogenicity uncover the association of immunogenicity reduction with genomic subtypes and poor prognosis in CRC. Moreover, we find that mitochondrial DNA copy number is an independent factor for predicting the survival outcome of CRCs. Overall, our results provide CRC-related molecular features for clinical practice and a valuable resource for translational research.


Assuntos
Neoplasias Colorretais , Exoma , Instabilidade Cromossômica , Neoplasias Colorretais/genética , Exoma/genética , Genômica , Humanos , Cinesinas , Sequenciamento do Exoma/métodos
10.
CNS Neurosci Ther ; 28(7): 1045-1058, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35403328

RESUMO

AIMS: Accumulating evidence has suggested that airborne fine particulate matter (PM2.5) exposure is associated with an increased risk of ischemic stroke. However, the underlying mechanisms have not been fully elucidated. In this study, we aim to investigate the role and mechanisms of NLRP3 inflammasome and pyroptosis in ischemic stroke after PM2.5 exposure. METHODS: The BV-2 and HMC-3 microglial cell lines were established and subjected to oxygen-glucose deprivation and reoxygenation (OGD/R) with or without PM2.5 exposure. We used the CCK-8 assay to explore the effects of PM2.5 on cell viability of BV-2 and HMC-3 cells. Then, the effects of PM2.5 exposure on NLRP3 inflammasome and pyroptosis following OGD/R were detected by western blotting, ELISA, and the confocal immunofluorescence staining. Afterwards, NLRP3 was knocked down to further validate the effects of PM2.5 on cell viability, NLRP3 inflammasome activation, and pyroptosis after OGD/R in HMC-3 cells. Finally, the intracellular reactive oxygen species (ROS) was measured and the ROS inhibitor N-acetyl-L-cysteine (NAC) was used to investigate whether ROS was required for PM2.5-induced NLRP3 inflammasome activation and pyroptosis under ischemic conditions. RESULTS: We found that PM2.5 exposure decreased the viability of BV-2 and HMC-3 cells in a dose- and time-dependent manner under ischemic conditions. Furthermore, PM2.5 exposure aggravated NLRP3 inflammasome activation and pyroptosis after OGD/R, as indicated by an increased expression of NLRP3, ASC, pro-caspase-1, Caspase-1, GSDMD, and GSDMD-N; increased production of IL-1ß and IL-18; and enhanced Caspase-1 activity and SYTOX green uptake. However, shRNA NLRP3 treatment attenuated the effects of PM2.5 on cell viability, NLRP3 inflammasome activation, and pyroptosis. Moreover, we observed that PM2.5 exposure increased the production of intracellular ROS following OGD/R, while inhibiting ROS production with NAC partially attenuated PM2.5-induced NLRP3 inflammasome activation and pyroptosis under ischemic conditions. CONCLUSION: These results suggested that PM2.5 exposure triggered the activation of NLRP3 inflammasome and pyroptosis under ischemic conditions, which may be mediated by increased ROS production after ischemic stroke. These findings may provide a more enhanced understanding of the interplay between PM2.5 and neuroinflammation and cell death, and reveal a novel mechanism of PM2.5-mediated toxic effects after ischemic stroke.


Assuntos
AVC Isquêmico , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Caspase 1/metabolismo , Glucose , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Material Particulado/toxicidade , Espécies Reativas de Oxigênio/metabolismo
11.
Curr Neurovasc Res ; 18(3): 343-350, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34636310

RESUMO

BACKGROUND: Chronic cerebral hypoperfusion (CCH) is a contributing factor for neurodegenerative diseases. As a recently identified heptapeptide of the brain renin-angiotensin system, angiotensin-(1-7) has been revealed to activate its receptor MAS1 and thus ameliorated cognitive impairments in rats with CCH. Since hippocampal synaptic degeneration represents an important pathological basis of cognitive deficits, we hypothesize that activating MAS1-mediated signaling may alleviate CCH-induced synaptic degeneration in the hippocampus. METHODS: In this study, we tested this hypothesis and uncovered the underlying mechanisms in a rat model of CCH induced by bilateral common carotid artery ligation surgery. At one week after the surgery, rats received a daily intraperitoneal vehicle injection or a non-peptidic MAS1 agonist AVE0991 for 8 weeks. During this procedure, Cerebral Blood Flow (CBF) was recorded. The levels of MAS1, amyloid-ß (Aß), neuroinflammatory cytokines, glial cell markers, and synaptophysin in the hippocampus were assessed at the end of the treatment period. RESULTS: We showed that AVE0991 significantly alleviated hippocampal synaptic degeneration in rats with CCH. This protection might be achieved by facilitating CBF recovery, reducing hippocampal Aß levels, and suppressing neuroinflammatory responses. CONCLUSION: These findings indicate that MAS1-mediated signaling may represent a novel therapeutic target for CCH-related neurodegenerative diseases.


Assuntos
Isquemia Encefálica , Disfunção Cognitiva , Animais , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Hipocampo/patologia , Imidazóis/uso terapêutico , Ratos
13.
Front Pharmacol ; 12: 712181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421608

RESUMO

Anlotinib is a novel multi-targeted tyrosine kinase inhibitor with activity against soft tissue sarcoma, small cell lung cancer, and non-small cell lung cancer (NSCLC). Potentiating the anticancer effect of anlotinib in combination strategies remains a clinical challenge. Metformin is an oral agent that is used as a first-line therapy for type 2 diabetes. Interesting, metformin also exerts broad anticancer effects through the activation of AMP-activated protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR). Here, we evaluated the possible synergistic effect of anlotinib and metformin in NSCLC cells. The results showed that metformin enhanced the antiproliferative effect of anlotinib. Moreover, anlotinib combined with metformin induced apoptosis and oxidative stress, which was associated with the activation of AMPK and inhibition of mTOR. Reactive oxygen species (ROS)- mediated p38/JNK MAPK and ERK signaling may be involved in the anticancer effects of this combination treatment. Our results show that metformin potentiates the efficacy of anlotinib in vivo by increasing the sensitivity of NSCLC cells to the drug. These data provide a potential rationale for the combination of anlotinib and metformin for the treatment of patients with NSCLC or other cancers.

14.
Sci Rep ; 11(1): 7907, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846437

RESUMO

Magnetic micro/nanorobots attracted much attention in biomedical fields because of their precise movement, manipulation, and targeting abilities. However, there is a lack of research on intelligent micro/nanorobots with stimuli-responsive drug delivery mechanisms for cancer therapy. To address this issue, we developed a type of strong covalently bound tri-bead drug delivery microrobots with NIR photothermal response azobenzene molecules attached to their carboxylic surface groups. The tri-bead microrobots are magnetic and showed good cytocompatibility even when their concentration is up to 200 µg/mL. In vitro photothermal experiments demonstrated fast NIR-responsive photothermal property; the microrobots were heated to 50 °C in 4 min, which triggered a significant increase in drug release. Motion control of the microrobots inside a microchannel demonstrated the feasibility of targeted therapy on tumor cells. Finally, experiments with lung cancer cells demonstrated the effectiveness of targeted chemo-photothermal therapy and were validated by cell viability assays. These results indicated that tri-bead microrobots have excellent potential for targeted chemo-photothermal therapy for lung cancer cell treatment.


Assuntos
Antineoplásicos/farmacologia , Hipertermia Induzida , Raios Infravermelhos , Magnetismo , Fototerapia , Robótica , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Humanos
15.
Eur J Med Chem ; 217: 113357, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33740547

RESUMO

PARP inhibitors have achieved great success in cancers with BRCA mutations, but only a small portion of patients carry BRCA mutations, which results in their narrow indication spectrum. Recently, emerging evidence has demonstrated that combinations of PARP and PI3K inhibitors could evoke unanticipated synergistic effects in various cancers, even including BRCA-proficient ones. In this work, a series of PARP/PI3K dual inhibitors were designed, synthesized, and evaluated for their biological activities. It was found that compounds 9a and 23a exhibited excellent inhibitory activities against PARP-1 (9a: IC50 = 1.57 nM, 23a: IC50 = 0.91 nM) and PI3Kα (9a: IC50 = 2.0 nM, 23a: IC50 = 1.5 nM), and showed promising antiproliferative activities against both BRCA-deficient (HCT-116, HCC-1937) and BRCA-proficient (SW620, MDA-MB-231/468) tumor cells. 9a and 23a also exhibited considerable in vivo antitumor efficacy in an MDA-MB-468 xenograft mouse model, with TGI values of 56.39% and 48.77%, respectively. Additionally, 23a possessed promising profiles including high kinase selectivity and low cardiotoxicity. Overall, this work indicates 9a and 23a might be potential PARP/PI3K dual inhibitors for cancer therapy and deserve further research.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Masculino , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
16.
Int J Nanomedicine ; 16: 2173-2186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33758505

RESUMO

BACKGROUND: Colon cancer is a top lethal cancer in man and women worldwide and drug resistance is the major cause of cancer-related death. Combinational therapy and drug delivery with nanoparticles have been shown to effectively overcome drug resistance in many cancers. We previously reported that nanoemulsion (NE) loaded paclitaxel (PTX) and BEZ235 could synergistically inhibit colon cancer cell growth. PURPOSE: To investigate whether NE loaded PTX and BEZ235 can overcome drug resistance and synergistically inhibit drug-resistant colon cancer cell growth in vitro and in vivo. METHODS: The in vitro treatment effect on cell viability was assayed using CCK8 kit, cell morphological change was detected by ß-tubulin immunofluorescence staining, drug resistance-related proteins were analyzed by Western blotting, and in vivo tumor growth test was performed in nude mice xeno-transplanted with 2 drug-resistant colon cancer cell lines HCT116-LOHP and HT29-DDP. RESULTS: Both cell lines were sensitive to PTX but relatively insensitive to BEZ235. PTX combined with BEZ235 synergistically inhibited the proliferation of both cell lines. Nanoemulsion loaded PTX (NE-PTX) reduced the IC50 of PTX to approximately 2/5 of free PTX, indicating a high inhibitory efficacy of NE-PTX. When NE-PTX combined with a low concentration of BEZ235 (50 nM), the IC50 was decreased to approximately 2/3 of free PTX. Moreover, NE-PTX+BEZ235 treatment increased apoptosis, decreased Pgp and ABCC1 expression, and reduced tumor weights compared to the single drug treatment and the control group. These results suggest that nanoemulsion loaded PTX+BEZ235 can overcome drug resistance and improve the inhibitory effect on cancer cell proliferation and tumor growth. CONCLUSION: Our study thus provides a possible new approach to treat colon cancer patients with drug resistance.


Assuntos
Apoptose , Neoplasias do Colo/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Imidazóis/uso terapêutico , Nanopartículas/química , Paclitaxel/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Quinolinas/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Contagem de Células , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Neoplasias do Colo/patologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Emulsões/química , Feminino , Humanos , Imidazóis/farmacologia , Concentração Inibidora 50 , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Paclitaxel/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Quinolinas/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Mol Histol ; 52(3): 539-544, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33608777

RESUMO

Both clear cell renal carcinoma (ccRCC) and clear cell carcinoma of the ovary (CCOC) have a clear cytoplasmic morphological feature, hence it is difficult to identify metastatic ccRCC and CCOC by morphology alone. At present, there are no effective immunohistochemical markers to distinguish between these two tumors. Studies have shown that the clear cytoplasm of ccRCC is mainly caused by cholesterol-rich lipids in the cytoplasm, while that of CCOC is due to the accumulation of cytoplasmic glycogen. OBJECTIVE: to hypothesize that the scavenger receptor class B-type 1 (SR-B1) protein responsible for HDL cholesterol uptake may be differentially expressed in ccRCC and CCOC, and high CD10 expression in the renal tubular epithelium may assist in distinguishing between ccRCC and CCOC. METHODS: effective immunohistochemical markers were applied in 90 cases of renal clear cell carcinoma and 31 cases of ovarian cancer to distinguish between the two types of tumors. RESULT: SR-B1 and CD10 expression is significantly higher in ccRCC than CCOC. Both SR-B1 and CD10 exhibited focal weak-medium intensity staining in CCOC, and their staining extent and intensity were significantly lower than ccRCC. The sensitivity and specificity of SR-B1 for identifying ccRCC were 74.4% and 83.9%, respectively. The sensitivity and specificity of CD10 for identifying CCOC were 93.3% and 80.6%, respectively. The combined SR-B1( +) CD10( +) immunoprofile supports the diagnosis of ccRCC with a specificity of 93.5%. The combined SR-B1(-) CD10(-) immunoprofile supports the diagnosis of CCOC with a specificity of 93.3%. CONCLUSIONS: our findings demonstrate that the combination of SR-B1 and CD10 immunoprofiling is a valuable tool for differential diagnosis of ccRCC and CCOC.


Assuntos
Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/imunologia , Neoplasias Renais/diagnóstico , Neoplasias Renais/imunologia , Neprilisina/metabolismo , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/imunologia , Receptores Depuradores Classe B/metabolismo , Adulto , Idoso , Carcinoma de Células Renais/patologia , Diagnóstico Diferencial , Feminino , Humanos , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Neoplasias Ovarianas/patologia , Sensibilidade e Especificidade
18.
Autophagy ; 17(10): 2905-2922, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33317392

RESUMO

Stroke is a major public health problem leading to high rates of death and disability worldwide, but no effective pharmacological therapy is currently available except for the use of PLAT (plasminogen activator, tissue). Here we show that PARP14 (poly (ADP-ribose) polymerase family, member 14) level was significantly increased in the peri-infarct zone of photothrombotic stroke (PT) mice. Genetic knockdown and pharmacological inhibition of PARP14 aggravated functional impairment and increased infarct volume in PT mice, while overexpression of PARP14 displayed the opposite effects. Furthermore, PARP14 was abundant in microglia, and downregulation of PARP14 increased post-stroke microglial activation, whereas overexpression of PARP14 alleviated microglial activation, possibly through microglial macroautophagy/autophagy modulation. Mechanistically, overexpression of PARP14 suppressed Lpar5 (lysophosphatidic acid receptor 5) gene transcription to inhibit microglial activation post stroke. Taken together, PARP14 is a stroke-induced signal that restricts microglial activation and promotes functional recovery, and can serve as a novel target to develop new therapeutic agents for stroke. Moreover, these findings may be conducive to proper use of various PARP inhibitors.Abbreviations: 3-MA: 3-methyladenine; AIF1/Iba-1: allograft inflammatory factor 1; CNS: central nervous system; CQ: chloroquine; DAPI: 4',6-diamidino-2-phenylindole; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; ELISA: enzyme-linked immunosorbent assay; FBS: fetal bovine serum; GFAP: glial fibrillary acidic protein; IL1B/IL-1ß: interleukin 1 beta; IL6/IL-6: interleukin 6; LPAR5: lysophosphatidic acid receptor 5; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; NOS2/iNOS: nitric oxide synthase 2, inducible; OGD: oxygen glucose deprivation; PAR: polymer of poly (ADP ribose); PARP: poly (ADP-ribose) polymerase family; PBS: phosphate-buffered saline; PLAT/tPA: plasminogen activator, tissue; PT: photothrombotic stroke; qPCR: quantitative polymerase chain reaction; Rap: rapamycin; RBFOX3/NeuN: RNA binding protein, fox-1 homolog (C. elegans) 3; SQSTM1: sequestosome 1; TNF/TNF-α: tumor necrosis factor.


Assuntos
Proteínas de Caenorhabditis elegans , Acidente Vascular Cerebral , Animais , Autofagia/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Regulação para Baixo , Camundongos , Microglia/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Proteínas de Ligação a RNA/metabolismo , Acidente Vascular Cerebral/genética
19.
Am J Cancer Res ; 10(9): 3037-3046, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042632

RESUMO

Gastric cancer (GC) is the second most common cancer in China. The ToGA study showed that trastuzumab in combination with fluoropyrimidine plus cisplatin prolonged overall survival (OS) in patients with human epidermal growth factor receptor 2 (HER2)-positive advanced GC (AGC). However, some patients may not be able to receive this regimen. We conducted a clinical study to evaluate the efficacy and safety of trastuzumab in combination with docetaxel+capecitabine (DX) in patients with HER2-positive AGC. This phase II, multi-center, open-label, single arm study enrolled patients with HER2-positive AGC who had not received prior treatment for metastatic disease. Patients were treated with a regimen of trastuzumab (8 mg/kg loading dose followed by 6 mg/kg, day 1), capecitabine (1000 mg/m2 twice daily, days 1-14) and docetaxel (60 mg/m2, day 1 for 6 cycles) every 3 weeks. The primary endpoint was progression-free survival (PFS) and the secondary endpoints were objective response rate (ORR), OS and safety profiles. Sixty-seven patients with AGC were enrolled from 14 centers. 64 were included in the full analysis set (FAS). The median PFS was 8.1 months (95% confidence interval [CI]: 5.6-12.8) and the median OS was 20.9 months (95% CI: 15.1-33.0). Response was evaluated in 59 patients. The ORR was 67.8%. The most common adverse events of Grade ≥3 were neutropenia, leukopenia, hand-foot syndrome, febrile neutropenia and anemia. We concluded that combination treatment with trastuzumab and DX was well-tolerated and highly effective in patients with HER2-positive AGC, and may offer an alternative to current treatments.

20.
Cancer Commun (Lond) ; 40(11): 620-632, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32914570

RESUMO

BACKGROUND: Inherited susceptibility accounts for nearly one-third of colorectal cancer (CRC) predispositions and has an 80%-100% lifetime risk of this disease. However, there are few data about germline mutations of hereditary CRC-related genes in Chinese patients with CRC. This study aimed to assess the prevalence of gene mutations related to cancer susceptibility among Chinese patients with CRC, differences between Chinese and Western patients, and the phenotype-genotype correlation. METHODS: We retrospectively collected tumor samples from 526 patients with CRC under 70 years old who underwent hereditary CRC genetic testing. A series of bioinformatic analyses, as well as statistical comparisons, were performed. RESULTS: We found that 77 patients (14.6%) harbored functional variants of the 12 genes. The mutation frequencies of the top 5 mutated genes were 6.5% for MutL homolog 1 (MLH1), 5.1% for MutS homolog 2 (MSH2), 1.0% for MSH6, 0.8% for PMS1 homolog 2 (PMS2), and 0.8% for APC regulator of the WNT signaling pathway (APC). Our data showed much higher rates of mutations of MSH6 and PMS2 genes among all mismatch repair (MMR) genes as compared with those in Western populations. Mutations in MLH1, MSH2, and MSH6 were found to be mutually exclusive. Patients with MLH1 or MSH2 mutations had higher frequencies of personal history of cancer (MLH1: 20.6% vs. 8.7%; MSH2: 25.9% vs. 8.6%) and family history of cancer than those without these mutations (MLH1: 73.5% vs. 48.4%; MSH2: 70.4% vs. 48.9%), and the lesions were more prone to occur on the right side of the colon than on the left side (MLH1: 73.5% vs. 29.3%; MSH2: 56.0% vs. 31.0%). The proportion of stage I/II disease was higher in patients with MLH1 mutations than in those without MLH1 mutations (70.6% vs. 50.7%), and the rate of polyps was higher in patients with APC mutations than in those with wild-type APC (75.0% vs. 17.4%). CONCLUSION: These results provide a full-scale landscape of hereditary susceptibility over 12 related genes in CRC patients and suggest that a comprehensive multi-gene panel testing for hereditary CRC predisposition could be a helpful analysis in clinical practice.


Assuntos
Neoplasias Colorretais , Mutação em Linhagem Germinativa , Idoso , China , Neoplasias Colorretais/genética , Proteínas de Ligação a DNA/genética , Feminino , Células Germinativas , Humanos , Masculino , Pessoa de Meia-Idade , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA