Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Drug Target ; 31(10): 1065-1080, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37962304

RESUMO

Nanoparticle-based drug delivery systems have found extensive use in delivering oncology therapeutics; however, some delivery vehicles still exhibit rapid immune clearance, lack of biocompatibility and insufficient targeting. In recent years, bionanoparticles constructed from tumour cell membranes have gained momentum as tumour-targeting therapeutic agents. Cancer cell membrane-coated nanoparticles (CCMCNPs) typically consist of a drug-loaded nanoparticle core coated with cancer cell membrane. CCMCNPs retain homologous tumour cell surface antigens, receptors and proteins, and it has been shown that the modified nanoparticles exhibit better homologous targeting, immune escape and biocompatibility. CCMCNPs are now widely used in a variety of cancer treatments, including photothermal, photodynamic and sonodynamic therapies, chemotherapy, immunotherapy, chemodynamical therapy or other combination therapies. This article presents different therapeutic approaches using multimodal antitumour therapy-combination of two or more therapies that treat tumours synergistically-based on tumour cell membrane systems. The advantages of CCMCNPs in different cancer treatments in recent years are summarised, thus, providing new strategies for cancer treatment research.


Assuntos
Nanopartículas , Neoplasias , Humanos , Biônica , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanopartículas/uso terapêutico , Sistemas de Liberação de Medicamentos , Fototerapia
2.
Colloids Surf B Biointerfaces ; 229: 113446, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37481805

RESUMO

An excessive inflammatory response induced by cytokine storms is the primary reason for the deterioration of patients with acute lung injury (ALI). Though natural polyphenols such as curcumin (CUR) have anti-inflammation activity for ALI treatment, they often have limited efficacy due to their poor solubility in water and oxidising tendency. This study investigates a highly cross-linked polyphosphazene nano-drug (PHCH) developed by copolymerisation of CUR and acid-sensitive units (4-hydroxy-benzoic acid (4-hydroxy-benzylidene)-hydrazide, D-HBD) with hexachlorotripolyphosphonitrile (HCCP) for improved treatment of ALI. PHCH can prolong the blood circulation time and targeted delivery into lung inflammation sites by enhancing CUR's water dispersion and anti-oxidant properties. PHCH also demonstrates the inflammation-responsive release of CUR in an inflammation environment due to the acid-responsive degradation of hydrazine bonds and triphosphonitrile rings in PHCH. Therefore, PHCH has a substantial anti-inflammation activity for ALI treatment by synergistically improving CUR's water-solubility, bioavailability and biocompatibility. As expected, PHCH attenuates the cytokine storm syndrome and alleviates inflammation in the infected cells and tissues by down-regulating several critical inflammatory cytokines (TNF-α, IL-1ß, and IL-8). PHCH also decreases the expression of p-p65 and C-Caspase-1, inhibiting NLRP3 inflammasomes and suppressing NF-κB signalling pathways. The administrated mice experiments confirmed that PHCH accumulation was enhanced in lung tissue and showed the efficient scavenging ability of reactive oxygen species (ROS), effectively blocking the cytokine storm and alleviating inflammatory damage in ALI. This smart polyphosphazene nano-drug with targeting delivery property and inflammation-responsive release of curcumin has excellent potential for the clinical treatment of various inflammatory diseases, including ALI.


Assuntos
Lesão Pulmonar Aguda , Curcumina , Nanopartículas , Camundongos , Animais , Curcumina/química , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/metabolismo , Lipopolissacarídeos/farmacologia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Pulmão/metabolismo , NF-kappa B/metabolismo , Nanopartículas/uso terapêutico
3.
Int J Pharm ; 642: 123197, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37406950

RESUMO

The microenvironment of excessive inflammation and the activation of apoptotic signals are primary barriers to neurological recovery following spinal cord injury (SCI). Thus, long-lasting anti-inflammation has become an effective strategy to navigate SCI. Herein, a curcumin (CUR)-containing nanosystem (FCTHPC) with high drug loading efficiency was reported via assembling hydrophobic CUR into cross-linked polyphosphazene (PPZ), and simultaneous loading and coordinating with porous bimetallic polymers for greatly enhanced the water-solubility and biocompatibility of CUR. The nanosystem is noncytotoxic when directing its biological activities. By inhibiting the expression of pro-inflammatory factors (IL-1ß, TNF-α and IL-6) and apoptotic proteins (C-caspase-3 and Bax/Bcl-2), which may be accomplished by activating the Wnt/ß-catenin pathway, the versatile FCTHPC can significantly alleviate the damage to tissues and cells caused by inflammation and apoptosis in the early stage of SCI. In addition, the long-term in vivo studies had demonstrated that FCTHPC could effectively inhibit the formation of glial scars, and simultaneously promote nerve regeneration and myelination, leading to significant recovery of spinal cord function. This study emphasises the promise of the biocompatible CUR-based nanosystem and provides a fresh approach to effectively treat SCI.


Assuntos
Curcumina , Nanopartículas , Traumatismos da Medula Espinal , Ratos , Animais , Curcumina/farmacologia , Curcumina/metabolismo , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/tratamento farmacológico , Medula Espinal/metabolismo , Anti-Inflamatórios/metabolismo , Polímeros/farmacologia , Apoptose , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Regeneração Nervosa , Nanopartículas/uso terapêutico
4.
Neurol Res ; 42(5): 361-371, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32149594

RESUMO

Objectives: Spinal cord injury (SCI) is a most debilitating traumatic injury, and cytotherapy is a promising alternative treatment strategy. Here we investigated the effect and mechanism of adipose-derived stem/stromal cells (ASCs) with overexpressing brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) (BDNF-NT3) in combination with silk fibroin/chitosan scaffold (SFCS) in SCI.Methods: Female Sprague-Dawley rats were used as an SCI model. SFCS,SFCS and ASCs, or ASCs overexpressing NT3, BDNF, and BDNF-NT3 were implanted into SCI rats. Basso, Beattie, and Bresnahan score, pathological changes, and spinal cord tissue and nerve fiber morphology were observed and assayed. GAP-43, GFAP, and caspase-3 expression was determined using immunohistochemistry and western blotting.Results: Smoother spinal cords, less scar tissue, and lower inflammatory activity were found in the SFCS, SFCS and ASCs, ASCs with NT3, BDNF, and BDNF-NT3 overexpression treatment than in the untreated SCI rat groups. Increasing formation of nerve fibers was observed in the above groups in order. GAP-43 expression significantly increased, while GFAP and caspase-3 expression significantly decreased. These results indicated obvious alleviation in pathological changes and BDNF-NT3 overexpression in ASCs combined with SFCS treatment in SCI rats.Conclusion: Thus, BDNF-NT3 overexpression from ASCs with SFCS had synergistic neuroprotective effects on SCI and may be a treatment option for SCI.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , Transplante de Células-Tronco Mesenquimais/instrumentação , Transplante de Células-Tronco Mesenquimais/métodos , Neurotrofina 3/administração & dosagem , Traumatismos da Medula Espinal , Alicerces Teciduais/química , Animais , Quitosana , Feminino , Fibroínas , Ratos , Ratos Sprague-Dawley
5.
Biochimie ; 167: 171-178, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31605737

RESUMO

The therapeutic effect of stem cell transplantation in traumatic spinal cord injury (SCI) has been extensively studied these days, and evidence has shown that stem cell-derived exosomes and exosome-shuttled miRNA (e.g. miR-21) contribute to the protective effects of stem cell transplantation against SCI. It has been reported that obesity, a prevalent metabolic disorder, reshapes stem cells and their extracellular vesicles. However, the effects of exosomes derived from obese rat stem cells on SCI and its underlying mechanism remain unknown. Here, we examined the effects of exosomes derived from obese rat mesenchymal stem cells (MSCs) on SCI, and tested the role of miR-21 in their effects. We found that exosomes derived from obese rat MSCs showed decreased miR-21 levels and did not exert protective effects against SCI. Overexpression of miR-21 in obese rat MSCs restored the protective effects of exosomes purified from obese rat MSCs against SCI. In addition, obese rat MSCs showed insulin resistance, and MSC insulin resistance decreased miR-21 levels in its secreted exosomes. These results suggested that miR-21 deficiency in obese rat MSCs contributes to the impaired protective effects of obese rat MSCs-derived exosomes against SCI, and further reinforced the notion that miR-21 is a potential molecule for treatment of SCI.


Assuntos
Exossomos/fisiologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/fisiologia , Obesidade/metabolismo , Traumatismos da Medula Espinal/terapia , Animais , Células Cultivadas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA