Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Biomed Pharmacother ; 177: 117012, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906025

RESUMO

Myocardial fibrosis is a pathological, physiological change that results from alterations, such as inflammation and metabolic dysfunction, after myocardial infarction (MI). Excessive fibrosis can cause cardiac dysfunction, ventricular remodeling, and heart failure. Caffeic acid (CA), a natural polyphenolic acid in various foods, has cardioprotective effects. This study aimed to explore whether CA exerts a cardioprotective effect to inhibit myocardial fibrosis post-MI and elucidate the underlying mechanisms. Histological observations indicated that CA ameliorated ventricular remodeling induced by left anterior descending coronary artery ligation in MI mice and partially restored cardiac function. CA selectively targeted transforming growth factor-ß receptor 1 (TGFBR1) and inhibited TGFBR1-Smad2/3 signaling, reducing collagen deposition in the infarcted area of MI mice hearts. Furthermore, cell counting (CCK-8) assay, 5-ethynyl-2'-deoxyuridine assay, and western blotting revealed that CA dose-dependently decreased the proliferation, collagen synthesis, and activation of the TGFBR1-Smad2/3 pathway in primary cardiac fibroblasts (CFs) stimulated by TGF-ß1 in vitro. Notably, TGFBR1 overexpression in CFs partially counteracted the inhibitory effects of CA. These findings suggest that CA effectively mitigates myocardial fibrosis and enhances cardiac function following MI and that this effect may be associated with the direct targeting of TGFBR1 by CA.

2.
Biochem Biophys Res Commun ; 715: 150004, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38678784

RESUMO

Megakaryopoiesis and platelet production is a complex process that is underpotential regulation at multiple stages. Many long non-coding RNAs (lncRNAs) are distributed in hematopoietic stem cells and platelets. lncRNAs may play important roles as key epigenetic regulators in megakaryocyte differentiation and proplatelet formation. lncRNA NORAD can affect cell ploidy by sequestering PUMILIO proteins, although its direct effect on megakaryocyte differentiation and thrombopoiesis is still unknown. In this study, we demonstrate NORAD RNA is highly expressed in the cytoplasm during megakaryocyte differentiation. Interestingly, we identified for the first time that NORAD has a strong inhibitory effect on megakaryocyte differentiation and proplatelet formation from cultured megakaryocytes. DUSP6/ERK1/2 pathway is activated in response to NORAD knockdown during megakaryocytopoiesis, which is achieved by sequestering PUM2 proteins. Finally, compared with the wild-type control mice, NORAD knockout mice show a faster platelet recovery after severe thrombocytopenia induced by 6 Gy total body irradiation. These findings demonstrate lncRNA NORAD has a key role in regulating megakaryocyte differentiation and thrombopoiesis, which provides a promising molecular target for the treatment of platelet-related diseases such as severe thrombocytopenia.


Assuntos
Plaquetas , Diferenciação Celular , Fosfatase 6 de Especificidade Dupla , Megacariócitos , Camundongos Knockout , RNA Longo não Codificante , Trombopoese , Megacariócitos/metabolismo , Megacariócitos/citologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Trombopoese/genética , Plaquetas/metabolismo , Camundongos , Fosfatase 6 de Especificidade Dupla/metabolismo , Fosfatase 6 de Especificidade Dupla/genética , Sistema de Sinalização das MAP Quinases , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombocitopenia/patologia , Humanos , Camundongos Endogâmicos C57BL , Células Cultivadas
3.
Phytother Res ; 38(6): 2800-2817, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38526171

RESUMO

BACKGROUND AND AIM: Although the anti-cancer activity of isoalantolactone (IATL) has been extensively studied, the anti-melanoma effects of IATL are still unknown. Here, we have investigated the anti-melanoma effects and mechanism of action of IATL. MTT and crystal violet staining assays were performed to detect the inhibitory effect of IATL on melanoma cell viability. Apoptosis and cell cycle arrest induced by IATL were examined using flow cytometry. The molecular mechanism of IATL was explored by Western blotting, confocal microscope analysis, molecular docking, and cellular thermal shift assay (CETSA). A B16F10 allograft mouse model was constructed to determine the anti-melanoma effects of IATL in vivo. The results showed that IATL exerted anti-melanoma effects in vitro and in vivo. IATL induced cytoprotective autophagy in melanoma cells by inhibiting the PI3K/AKT/mTOR signaling. Moreover, IATL inhibited STAT3 activation both in melanoma cells and allograft tumors not only by binding to the SH2 domain of STAT3 but also by suppressing the activity of its upstream kinase Src. These findings demonstrate that IATL exerts anti-melanoma effects via inhibiting the STAT3 and PI3K/AKT/mTOR signaling pathways, and provides a pharmacological basis for developing IATL as a novel phytotherapeutic agent for treating melanoma clinically.


Assuntos
Melanoma Experimental , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fator de Transcrição STAT3 , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Apoptose/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Humanos , Furanos/farmacologia , Simulação de Acoplamento Molecular , Sobrevivência Celular/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Autofagia/efeitos dos fármacos , Sesquiterpenos
4.
Nucleic Acids Res ; 52(9): 4969-4984, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38452206

RESUMO

Proteasome-mediated degradation of chromatin-bound NF-κB is critical in terminating the transcription of pro-inflammatory genes and can be triggered by Set9-mediated lysine methylation of the RelA subunit. However, the E3 ligase targeting methylated RelA remains unknown. Here, we find that two structurally similar substrate-recognizing components of Cullin-RING E3 ligases, WSB1 and WSB2, can recognize chromatin-bound methylated RelA for polyubiquitination and proteasomal degradation. We showed that WSB1/2 negatively regulated a subset of NF-κB target genes via associating with chromatin where they targeted methylated RelA for ubiquitination, facilitating the termination of NF-κB-dependent transcription. WSB1/2 specifically interacted with methylated lysines (K) 314 and 315 of RelA via their N-terminal WD-40 repeat (WDR) domains, thereby promoting ubiquitination of RelA. Computational modeling further revealed that a conserved aspartic acid (D) at position 158 within the WDR domain of WSB2 coordinates K314/K315 of RelA, with a higher affinity when either of the lysines is methylated. Mutation of D158 abolished WSB2's ability to bind to and promote ubiquitination of methylated RelA. Together, our study identifies a novel function and the underlying mechanism for WSB1/2 in degrading chromatin-bound methylated RelA and preventing sustained NF-κB activation, providing potential new targets for therapeutic intervention of NF-κB-mediated inflammatory diseases.


Assuntos
Cromatina , Complexo de Endopeptidases do Proteassoma , Fator de Transcrição RelA , Ubiquitinação , Humanos , Cromatina/metabolismo , Células HEK293 , Lisina/metabolismo , Metilação , NF-kappa B/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Fator de Transcrição RelA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
5.
Curr Med Sci ; 43(6): 1201-1205, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37848750

RESUMO

OBJECTIVE: Lipopolysaccharide-induced tumor necrosis factor-α factor (LITAF) protein is a newly discovered inflammatory protein. This study aims to study the role of LITAF in the formation of atherosclerosis. METHODS: A total of 10 C57BL/6J mice and 10 C57BL/6J mice with knockout of LITAF gene (C57BL/6J-LITAF-) were divided into two groups: the control group and the LITAF-/- group. The animals were accommodated for 16 weeks and then euthanized with their hearts and aortas isolated thereafter. Next, the roots of the mouse aorta were cryosectioned and stained with Oil Red O staining and immunohistochemical staining (CD68, α-SMA, and Masson), respectively. The area of Oil Red O staining and the proportion of positive expression after immunohistochemical staining were then compared between the control and LITAF-/- groups. At the same time, the blood of mice was collected for the extraction of proteins and RNA. The proteins and RNA were used to detect the expression of major molecules of the NF-κB inflammatory pathway in mice in the control group and the LITAF-/- group by Western blotting and RT-PCR. RESULTS: Oil Red O staining of the aortic root sections of the mice in each group revealed that the area of atherosclerotic plaques in the LITAF-/- group was substantially lower than that in the control group (P<0.05). Moreover, immunohistochemical staining determined that the expression level of α-SMA and CD68 in the LITAF-/- group was significantly lower than that in the control group, whereas the results were reversed following Masson staining (P<0.05). The expression levels of P65 and caspase 3 were significantly lower in the LITAF-/- group than in the control group (P<0.05), whereas the expression level of IκB was higher in the LITAF-/- group. CONCLUSION: LITAF might participate in the formation of atherosclerotic plaque through the NF-κB pathway and play a promoting role in the formation of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Aterosclerose/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , RNA , Transdução de Sinais , Fator de Necrose Tumoral alfa
6.
Sci China Life Sci ; 66(11): 2527-2542, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37428305

RESUMO

Alveolar macrophages (AMs) are self-maintained immune cells that play vital roles in lung homeostasis and immunity. Although reporter mice and culture systems have been established for studying macrophages, an accurate and specific reporter line for alveolar macrophage study is still not available. Here we reported a novel Rspo1-tdTomato gene reporter mouse line that could specifically label mouse AMs in a cell-intrinsic manner. Using this reporter system, we visualized the dynamics of alveolar macrophages intravitally under steady state and characterized the alveolar macrophage differentiation under in vitro condition. By performing ATAC-seq, we found that insertion of the tdTomato cassette in the Rspo1 locus increased the accessibility of a PPARE motif within the Rspo1 locus and revealed a potential regulation by key transcription factor PPAR-γ for alveolar macrophage differentiation in vitro and in vivo. Consistently, perturbation of PPAR-γ by its agonist rosiglitazone or inhibitor GW9662 resulted in corresponding alteration of tdTomato expression in alveolar macrophages together with the transcription of PPAR-γ downstream target genes. Furthermore, global transcriptomic analyses of AMs from the wild type mice and the Rspo1-tdTomato mice showed comparable gene expression profiles, especially those AM-specific genes, confirming that the insertion of the tdTomato cassette in the Rspo1 locus does not impact the cell identity and biological function of AMs under normal condition. Taken together, our study provides an alternative tool for in vivo and in vitro labeling of alveolar macrophages with high specificity which could also be utilized as an indicator of PPAR-γ activity for future development of PPAR-γ specific targeting drugs.


Assuntos
Pulmão , Macrófagos Alveolares , Camundongos , Animais , Macrófagos Alveolares/metabolismo , Pulmão/metabolismo , Macrófagos/metabolismo , Regulação da Expressão Gênica , PPAR gama/genética , PPAR gama/metabolismo
7.
Adv Sci (Weinh) ; 10(22): e2301834, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37211707

RESUMO

Cigarettes, despite being economically important legal consumer products, are highly addictive and harmful, particularly to the respiratory system. Tobacco smoke is a complex mixture containing over 7000 chemical compounds, 86 of which are identified to have "sufficient evidence of carcinogenicity" in either animal or human tests. Thus, tobacco smoke poses a significant health risk to humans. This article focuses on materials that help reduce the levels of major carcinogens in cigarette smoke; these include nicotine, polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines, hydrogen cyanide, carbon monoxide, and formaldehyde. Specifically, the research progress on adsorption effects and mechanisms of advanced materials such as cellulose, zeolite, activated carbon, graphene, and molecularly imprinted polymers are highlighted. The future trends and prospects in this field are also discussed. Notably, with advancements in supramolecular chemistry and materials engineering, the design of functionally oriented materials has become increasingly multidisciplinary. Certainly, several advanced materials can play a critical role in reducing the harmful effects of cigarette smoke. This review aims to serve as an insightful reference for the design of hybrid and functionally oriented advanced materials.


Assuntos
Fumar Cigarros , Poluição por Fumaça de Tabaco , Humanos , Poluição por Fumaça de Tabaco/análise , Adsorção , Carcinógenos/análise
8.
J Ethnopharmacol ; 312: 116548, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37100264

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hepatocellular carcinoma (HCC) poses a growing challenge to global health efforts. The 5-year survival rate of HCC patients is still dismal. A traditional prescription Qi-Wei-Wan (QWW) comprising Astragali Radix and Schisandra chinensis Fructus has traditionally been used for HCC treatment according to traditional Chinese medicine theory, but the pharmacological basis is not clear. AIM OF THE STUDY: This study aims to investigate the anti-HCC effects of an ethanolic extract of QWW (hereafter, QWWE) and the mechanism of action. MATERIALS AND METHODS: An UPLC-Q-TOF-MS/MS method was developed to control the quality of QWWE. Two human HCC cell lines (HCCLM3 and HepG2) and a HCCLM3 xenograft mouse model were employed to investigate the anti-HCC effects of QWWE. The anti-proliferative effect of QWWE in vitro was determined by MTT, colony formation and EdU staining assays. Apoptosis and protein levels were examined by flow cytometry and Western blotting, respectively. Nuclear presence of signal transducer and activator of transcription 3 (STAT3) was examined by immunostaining. Transient transfection of pEGFP-LC3 and STAT3C plasmids was performed to assess autophagy and determine the involvement of STAT3 signaling in QWWE's anti-HCC effects, respectively. RESULTS: We found that QWWE inhibited the proliferation of and triggered apoptosis in HCC cells. Mechanistically, QWWE inhibited the activation of SRC and STAT3 at Tyr416 and Tyr705, respectively; inhibited the nuclear translocation of STAT3; lowered Bcl-2 protein levels, while increased Bax protein levels in HCC cells. Over-activating STAT3 attenuated the cytotoxic and apoptotic effects of QWWE in HCC cells. Moreover, QWWE induced autophagy in HCC cells by inhibiting mTOR signaling. Blocking autophagy with autophagy inhibitors (3-methyladenine and chloroquine) enhanced the cytotoxicity, apoptotic effect and the inhibitory effect on STAT3 activation of QWWE. Intragastric administration of QWWE at 10 mg/kg and 20 mg/kg potently repressed tumor growth and inhibited STAT3 and mTOR signaling in tumor tissues, but did not significantly affect mouse body weight. CONCLUSION: QWWE exhibited potent anti-HCC effects. Inhibiting the STAT3 signaling pathway is involved in QWWE-mediated apoptosis, while blocking mTOR signaling contributes to QWWE-mediated autophagy induction. Blockade of autophagy enhanced the anti-HCC effects of QWWE, indicating that the combination of an autophagy inhibitor and QWWE might be a promising therapeutic strategy for HCC management. Our findings provide pharmacological justifications for the traditional use of QWW in treating HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Schisandra , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Espectrometria de Massas em Tandem , Apoptose , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Proliferação de Células
9.
Talanta ; 258: 124453, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36924637

RESUMO

Exosomes are one of the most promising biomarkers for tumor diagnosis and prognosis. Therefore, the development of convenient and sensitive exosome sensing strategies is of great significance. Herein, we integrated aptamer-based spherical nucleic acids (SNAs) and hybridization chain reaction (HCR) into a colorimetric aptasensor platform and applied it to the detection of exosomes. In this design, the CD63-specific aptamer pre-immobilized on the microplate was used to capture target exosomes, while the SNAs conjugated with nucleolin-specific aptamer and trigger probe H1 were designed for amplifying signal. In the presence of target exosomes, the SNAs can be attached to the microplate by the bridge effect of exosomes, resulting in the trigger of HCR. This process is accompanied by the formation of abundant G-quadruplex/hemin DNAzyme, enabling the visual quantitative analysis of exosomes. Featured with the dual amplification of SNAs and HCR, the proposed aptasensor achieved a considerable detection limit of 50 particles/µL. The practicability of this method was further verified by testing the different clinical samples. Given the ability of the aptasensor to visually detect exosomes in scenarios lacking instruments and resources, we believe that the aptasensor can be serve as a potential on-site test for liquid biopsy.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA Catalítico , Exossomos , Colorimetria/métodos , Hibridização de Ácido Nucleico , Técnicas Biossensoriais/métodos , Limite de Detecção
10.
Phytomedicine ; 110: 154640, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36608498

RESUMO

BACKGROUND: Osthole (OST), a characteristic coumarin compound in Angelicae pubescentis radix (APR), has shown potent efficacy in the treatment of rheumatoid arthritis (RA), but its specific targets and potential mechanism are limited. PURPOSE: This study aimed to explore the potential targets and molecular mechanisms of OST against RA using computer-assisted techniques in combination with RA fibroblast-like synoviocytes (FLS) inflammation model and CIA rat model. METHODS: Network pharmacology and molecular docking were applied to initially predict the potential targets of OST for the treatment of RA. Thereafter, TNFα was used to stimulate FLS to build an in vitro model of inflammation, combined with RNA-seq technology and molecular biology such as qPCR to investigate the anti-inflammatory effects and related mechanisms of OST. Finally, the anti-RA effect of OST was demonstrated by establishing a CIA rat model. RESULTS: The network model results showed that the anti-RA effect of OST was mainly related to its anti-inflammatory effect, and AMPK was identified as a potential target for the potency of OST. In the TNFα-induced FLS cells, OST inhibited the secretion of FLS inflammatory factors, which was attributed to the ability of OST to activate AMPK to inhibit the activation of the NLRP3 inflammasome. Further, it was observed that the activation of AMPK by OST facilitated mitochondrial biogenesis, and corrected abnormal mitochondrial dynamics in FLS, which was favoured to the restoration of mitochondrial homeostasis, and further promoted the occurrence of apoptosis and the decrease of ROS in FLS. Consistent with in vivo studies, administration of OST significantly improved joint deformity and toe erythema, reduced arthritis index scores and inhibited synovial inflammation in CIA rats. CONCLUSION: Our study proposed for the first time that AMPK, served as a potential target of OST, positively participated in the anti-RA therapeutic effect of OST. By regulating mitochondrial homeostasis and function, OST can effectively inhibit the activation of inflammasome and the secretion of inflammatory factors in vitro and in vivo, and finally achieve beneficial effects in the treatment of RA, which provides support and greater possibility to make further efforts on pharmacological research and clinical application of OST.


Assuntos
Artrite Reumatoide , Fator de Necrose Tumoral alfa , Ratos , Animais , Fator de Necrose Tumoral alfa/farmacologia , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Quinases Ativadas por AMP , Simulação de Acoplamento Molecular , Artrite Reumatoide/tratamento farmacológico , Cumarínicos/farmacologia , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Fibroblastos , Células Cultivadas , Membrana Sinovial
11.
Stroke Vasc Neurol ; 8(3): 181-192, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36241224

RESUMO

BACKGROUND: Ischaemic stroke and other cardiovascular illnesses are characterised by abnormalities in the processes of thrombosis and haemostasis, which rely on platelet activity. In platelets, a wide variety of microRNAs (long non-coding RNA, lncRNAs) is found. Due to the absence of nuclear DNA in platelets, lncRNAs may serve as critical post-transcriptional regulators of platelet activities. However, research into the roles of lncRNAs in platelets is limited. OBJECTIVE: The purpose of this study is to learn more about the molecular mechanism by which MALAT1 affects platelet activity and thrombus formation. METHODS/RESULTS: The CD34+ megakaryocytes used in this research as an in vitro model for human megakaryocytes and platelets. Cell adhesion and spreading are enhanced in the absence and presence of agonists in CD34+ megakaryocytes subjected to MALAT1 knockdown (KD). The adhesion and activity of platelet-like particles produced by MALAT1 KD cells are significantly enhanced at rest and after thrombin activation. Thrombus development on a collagen matrix is also greatly enhanced in the microfluidic whole-blood perfusion model: platelets lacking MALAT1 exhibit elevated accumulation, distributing area and activity. In addition, MALAT1-deficient mice bleed less and form a stable occlusive thrombus more quickly than wild-type mice. PTEN and PDK1 regulated the activity of MALAT1 in platelets to carry out its PI3k/Akt/GSK-3ß signalling pathway-related function. CONCLUSION: The suppression of MALAT1 expression significantly increases platelet adhesion, spreading, platelet activity, and thrombus formation. lncRNAs may constitute a unique class of platelet function modulators.


Assuntos
Isquemia Encefálica , RNA Longo não Codificante , Acidente Vascular Cerebral , Trombose , Animais , Humanos , Camundongos , Plaquetas/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Agregação Plaquetária , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Acidente Vascular Cerebral/metabolismo , Trombose/genética
12.
Phytomedicine ; 108: 154526, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334389

RESUMO

BACKGROUND: Melanoma is an aggressive cancer. Gracillin has been reported to treat various types of cancer, such as colorectal and lung cancer. However, there is a paucity of research on the anti-melanoma effects of gracillin. PURPOSE: The aim of this study was to assess the anti-melanoma effects and mechanisms of action of gracillin in vitro and in vivo. METHODS: Cell viability was detected using MTT and crystal violet staining assays. Cell proliferation was examined by EdU staining assays. Cell cycle arrest and apoptosis were analyzed by flow cytometry. Autophagic flux was monitored under a confocal microscope. Protein levels were determined by immunoblotting. LY294002 and rapamycin (Rapa) were used to determine the involvement of PI3K/AKT/mTOR signaling in gracillin-mediated autophagy. Signal transducer and activator of transcription 3 (STAT3) was overactivated to explore the contribution of the STAT3 signaling pathway in the anti-melanoma effects of gracillin. A B16F10 allograft mouse model was developed to evaluate the anti-melanoma effects of gracillin in vivo. RESULTS: We demonstrated that in melanoma cells, gracillin inhibited proliferation, induced G0/G1 phase cell cycle arrest, evoked apoptosis, and triggered autophagic cell death. Gracillin induced DNA damage in melanoma cells. Moreover, it suppressed the phosphorylation/activation of PI3K, AKT, mTOR, and 4E-BP1 in melanoma cells. Inhibiting PI3K/AKT and mTOR activity using LY294002 and Rapa, respectively, increased the protein level of LC3B-II in gracillin-treated melanoma cells. Furthermore, gracillin downregulated the protein levels of p-JAK2 (Tyr1007/1008), p-Src (Tyr416), and p-STAT3 (Tyr705) in melanoma cells. Over-expression of STAT3 in A375 cells significantly mitigated the cytotoxic and apoptotic effects of gracillin. In vivo studies showed that gracillin (1 mg/kg or 8 mg/kg, administered intraperitoneally for 16 consecutive days) suppressed B16F10 tumor growth and Src/STAT3 and AKT/mTOR signaling in tumors. No overt toxicity was observed in mice. CONCLUSION: Induction of DNA damage, inhibition of PI3K/AKT/mTOR signaling and suppression of STAT3 signaling are involved in gracillin-mediated cell cycle arrest, autophagic cell death and apoptosis, respectively, in melanoma cells. These findings provide novel insights into the anti-melanoma molecular mechanisms of gracillin, and suggest a potential role of gracillin in melanoma management.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose , Autofagia , Serina-Treonina Quinases TOR/metabolismo , Melanoma/tratamento farmacológico , Proliferação de Células , Dano ao DNA , Linhagem Celular Tumoral
13.
Rev. bras. med. esporte ; 29: e2022_0797, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1423420

RESUMO

ABSTRACT Introduction The isolation policy caused by COVID-19 is plaguing physical exercise behavior, which seems to affect college students' physical and mental health. Objective Understand the current situation of college students' exercise behavior during COVID-19, analyzing the physical and mental health status to provide policy guidance on formulating appropriate exercise behavior for college students in the context of the epidemic. Methods 250 students from 20 colleges and universities in China were randomly selected as observation volunteers. The adherents' exercise-related behavior and physical and mental health were observed and analyzed by questionnaire, and subsequently evaluated according to statistical methods. Results The results showed that exercise motivation, exercise frequency, exercise duration, and exercise items of the surveyed individuals affected the physical and mental health of college students; these effects were statistically significant (p<0.05). Conclusion Under the control of COVID-19, college students should correct their motivation to exercise by choosing their own exercise programs to set a frequency and prolong the duration of exercise to improve their physical and mental health. Level of evidence II; Therapeutic studies - investigating treatment outcomes.


RESUMO Introdução A política de isolamento causada pela COVID-19 está assolando o comportamento de exercício físico, o que parece afetar a saúde física e mental dos estudantes universitários. Objetivo Compreender a situação atual do comportamento de exercício físico dos estudantes universitários durante a COVID-19, analisando o estado de saúde física e mental dos estudantes universitários para fornecer uma orientação política sobre a formulação de comportamento de exercício físico adequado aos estudantes universitários no contexto da epidemia. Métodos Um total de 250 estudantes de 20 faculdades e universidades na China foram selecionados aleatoriamente como voluntários de observação. O comportamento relacionado ao exercício físico, saúde física e mental dos adeptos foi observado e analisado por questionário, posteriormente avaliado segundo métodos estatísticos. Resultados Os resultados mostraram que a motivação do exercício, a frequência do exercício, a duração do exercício e os itens de exercício dos indivíduos pesquisados afetaram a saúde física e mental dos estudantes universitários, estes efeitos foram estatisticamente significativos (p<0,05). Conclusão Sob o controle da COVID-19, os estudantes universitários devem corrigir sua motivação ao exercício, escolhendo seus próprios programas de exercícios para fixar uma frequência e prolongar a duração do exercício para melhorar sua saúde física e mental. Nível de evidência II; Estudos terapêuticos - investigação dos resultados do tratamento.


RESUMEN Introducción La política de aislamiento causada por COVID-19 está asolando el comportamiento del ejercicio físico, que parece afectar a la salud física y mental de los estudiantes universitarios. Objetivo Comprender la situación actual de la conducta de ejercicio de los estudiantes universitarios durante la COVID-19 analizando el estado de salud física y mental de los estudiantes universitarios para proporcionar orientación política sobre la formulación de una conducta de ejercicio adecuada para los estudiantes universitarios en el contexto de la epidemia. Métodos se seleccionó aleatoriamente a un total de 250 estudiantes de 20 facultades y universidades de China como voluntarios de observación. El comportamiento relacionado con el ejercicio y la salud física y mental de los adherentes se observaron y analizaron mediante cuestionario, evaluándose posteriormente según métodos estadísticos. Resultados Los resultados mostraron que la motivación para el ejercicio, la frecuencia de ejercicio, la duración del ejercicio y los ítems de ejercicio de las personas encuestadas afectaban a la salud física y mental de los estudiantes universitarios, siendo estos efectos estadísticamente significativos (p<0,05). Conclusión Bajo el control del COVID-19, los estudiantes universitarios deben corregir su motivación para hacer ejercicio eligiendo sus propios programas de ejercicio para establecer una frecuencia y prolongar la duración del ejercicio para mejorar su salud física y mental. Nivel de evidencia II; Estudios terapéuticos - investigación de los resultados del tratamiento.

14.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233191

RESUMO

Polyphyllin II (PPII) is a natural steroidal saponin occurring in Rhizoma Paridis. It has been demonstrated to exhibit anti-cancer activity against a variety of cancer cells. However, the anti-colorectal cancer (CRC) effects and mechanism of action of PPII are rarely reported. In the present study, we showed that PPII inhibited the proliferation of HCT116 and SW620 cells. Moreover, PPII induced G2/M-phase cell cycle arrest and apoptosis, as well as protective autophagy, in CRC cells. We found that PPII-induced autophagy was associated with the inhibition of PI3K/AKT/mTOR signaling. Western blotting results further revealed that PPII lowered the protein levels of phospho-Src (Tyr416), phospho-JAK2 (Tyr1007/1008), phospho-STAT3 (Tyr705), and STAT3-targeted molecules in CRC cells. The overactivation of STAT3 attenuated the cytotoxicity of PPII against HCT116 cells, indicating the involvement of STAT3 inhibition in the anti-CRC effects of PPII. PPII (0.5 mg/kg or 1 mg/kg, i.p. once every 3 days) suppressed HCT116 tumor growth in nude mice. In alignment with the in vitro results, PPII inhibited proliferation, induced apoptosis, and lowered the protein levels of phospho-STAT3, phospho-AKT, and phospho-mTOR in xenografts. These data suggest that PPII could be a potent therapeutic agent for the treatment of CRC.


Assuntos
Neoplasias Colorretais , Saponinas , Animais , Apoptose , Autofagia , Neoplasias Colorretais/patologia , Humanos , Camundongos , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Esteroides , Serina-Treonina Quinases TOR/metabolismo
15.
Biochemistry (Mosc) ; 87(9): 957-964, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36180997

RESUMO

Toll-like receptor 4 (TLR4) is a key pattern recognition receptor that can be activated by bacterial lipopolysaccharide to elicit inflammatory response. Proper activation of TLR4 is critical for the host defense against microbial infections. Since overactivation of TLR4 causes deleterious effects and inflammatory diseases, its activation needs to be tightly controlled by negative regulatory mechanisms, among which the most pivotal could be deubiquitination of key signaling molecules mediated by deubiquitinating enzymes (DUBs). CYLD is a member of the USP family of DUBs that acts as a critical negative regulator of TLR4-depedent inflammatory responses by deconjugating polyubiquitin chains from signaling molecules, such as TRAF6 and TAK1. Dysregulation of CYLD is implicated in inflammatory diseases. However, how the function of CYLD is regulated during inflammatory response remains largely unclear. Recently, we and other authors have shown that Spata2 functions as an important CYLD partner to regulate enzymatic activity of CYLD and substrate binding by this protein. Here, we show that a Spata2-like protein, Spata2L, can also form a complex with CYLD to inhibit the TLR4-dependent inflammatory response. We found that Spata2L constitutively interacts with CYLD and that the deficiency of Spata2L enhances the LPS-induced NF-κB activation and proinflammatory cytokine gene expression. Mechanistically, Spata2L potentiated CYLD-mediated deubiquitination of TRAF6 and TAK1 likely by promoting CYLD enzymatic activity. These findings identify Spata2L as a novel CYLD regulator, provide new insights into regulatory mechanisms underlying CYLD role in TLR4 signaling, and suggest potential targets for modulating TLR4-induced inflammation.


Assuntos
Fator 6 Associado a Receptor de TNF , Receptor 4 Toll-Like , Citocinas/metabolismo , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Poliubiquitina/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like/metabolismo
16.
Front Pharmacol ; 13: 903599, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645799

RESUMO

Colorectal cancer (CRC) is an aggressive cancer. Isoalantolactone (IATL) has been reported to exert cytotoxicity against various cancer cells, but not CRC. In this study, we explored the anti-CRC effects and mechanism of action of IATL in vitro and in vivo. Our results demonstrated that IATL inhibited proliferation by inducing G0/G1 phase cell cycle arrest, apoptosis and autophagy in CRC cells. Repression of autophagy with autophagy inhibitors chloroquine (CQ) and Bafilomycin A1 (Baf-A1) enhanced the anti-CRC effects of IATL, suggesting that IATL induces cytoprotective autophagy in CRC cells. Mechanistic studies revealed that IATL lowered protein levels of phospho-AKT (Ser473), phospho-mTOR (Ser2448), phospho-70S6K (Thr421/Ser424) in CRC cells. Inhibition of AKT and mTOR activities using LY294002 and rapamycin, respectively, potentiated the inductive effects of IATL on autophagy and cell death. In vivo studies showed that IATL suppressed HCT116 tumor growth without affecting the body weight of mice. In consistent with the in vitro results, IATL lowered protein levels of Bcl-2, Bcl-XL, phospho-AKT (Ser473), phospho-mTOR (Ser2448), and phsopho-70S6K (Thr421/Ser424), whereas upregulated protein levels of cleaved-PARP and LC3B-II in HCT116 tumors. Collectively, our results demonstrated that in addition to inhibiting proliferation, inducing G0/G1-phase cell cycle arrest and apoptosis, IATL initiates cytoprotective autophagy in CRC cells by inhibiting the AKT/mTOR signaling pathway. These findings provide an experimental basis for the evaluation of IATL as a novel medication for CRC treatment.

17.
Food Funct ; 13(6): 3234-3246, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35213678

RESUMO

Background: Abnormal proliferation of vascular smooth muscle cells (VSMCs) in the intimal region is a key event in the development of neointimal hyperplasia. 10-G, a bioactive compound found in ginger, exerted inhibitory effects on the proliferation of several cancer cells. However, the effect and mechanism of 10-G on neointimal hyperplasia are not clear. Purpose: To explore the suppressive effects of 10-G on the proliferation and migration of VSMCs, and investigate the underlying mechanisms. Methods: In vivo, a left common carotid artery ligation mouse model was used to observe the effects of neointimal formation through immunohistochemistry and hematoxylin-eosin staining. In vitro, the cell proliferation and migration of HASMCs and A7r5 cells were detected by MTS assay, EdU staining, wound healing assay, Transwell assay, and western blotting as well. Molecular docking, molecular dynamics simulations and surface plasmon resonance imaging were collectively used to evaluate the interaction of 10-G with AMP-activated protein kinase (AMPK). Compound C and si-AMPK were used to inhibit the expression of AMPK. Results: Treatment with 10-G significantly reduced neointimal hyperplasia in the left common carotid artery ligation mouse model. MST and EdU staining showed that 10-G inhibited the proliferation of VSMC cells A7r5 and HASMC. We also found that 10-G altered the expression of proliferation-related proteins, including CyclinD1, CyclinD2, CyclinD3, and CDK4. Molecular docking revealed that the binding energy between AMPK and 10-G is -7.4 kcal mol-1. Molecular simulations suggested that the binding between 10-G and AMPK is stable. Surface plasmon resonance imaging analysis also showed that 10-G has a strong binding affinity to AMPK (KD = 6.81 × 10-8 M). 10-G promoted AMPKα phosphorylation both in vivo and in vitro. Blocking AMPK by an siRNA or AMPK inhibitor pathway partly abolished the anti-proliferation effects of 10-G on VSMCs. Conclusion: These data showed that 10-G might inhibit neointimal hyperplasia and suppress VSMC proliferation by the activation of AMPK as a natural AMPK agonist.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Catecóis/farmacologia , Álcoois Graxos/farmacologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Neointima/patologia , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/química , Animais , Catecóis/química , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática , Álcoois Graxos/química , Humanos , Hiperplasia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Simulação de Acoplamento Molecular , Músculo Liso Vascular/efeitos dos fármacos , Fosforilação , Conformação Proteica , Ratos , Transdução de Sinais , Ressonância de Plasmônio de Superfície , Serina-Treonina Quinases TOR/metabolismo
18.
Phytomedicine ; 95: 153705, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34538671

RESUMO

BACKGROUND: Liver cancer is one of the leading causes of cancer-related death worldwide. Dihydrotanshinone I (DHI) was shown to inhibit the growth of several types of cancer. However, research related to hepatoma treatment using DHI is limited. PURPOSE: Here, we explored the inhibitory effect of DHI on the growth of hepatoma cells, and investigated the underlying molecular mechanisms. METHODS: The proliferation of Hep3B, SMCC-7721 and SK-Hep1 hepatoma cells was evaluated using the MTS and Edu staining assay. Hepatoma cell death was analyzed with a LIVE/DEAD Cell Imaging Kit. The relative expression and phosphorylation of proto-oncogene tyrosine-protein kinase Src (Src) and signal transducer and activator of transcription-3 (STAT3) proteins in hepatoma cells, as well as the expression of other protein components, were measured by western blotting. The structural interaction of DHI with Src proteins was evaluated by molecular docking, molecular dynamics simulation, surface plasmon resonance imaging and Src kinase inhibition assay. Src overexpression was achieved by infection with an adenovirus vector encoding human Src. Subsequently, the effects of DHI on tumor growth inhibition were further validated using mouse xenograft models of hepatoma. RESULTS: In vitro studies showed that treatment with DHI inhibited the proliferation and promoted cell death of Hep3B, SMCC-7721 and SK-Hep1 hepatoma cells. We further identified and verified Src as a direct target of DHI by using molecular stimulation, surface plasmon resonance image and Src kinase inhibition assay. Treatment with DHI reduced the in vitro phosphorylation levels of Src and STAT3, a transcription factor regulated by Src. In the xenograft mouse models, DHI dose-dependently suppressed tumor growth and Src and STAT3 phosphorylation. Moreover, Src overexpression partly abrogated the inhibitory effects of DHI on the proliferation and cell death in hepatoma cells. CONCLUSION: Our results suggest that DHI inhibits the growth of hepatoma cells by direct inhibition of Src.


Assuntos
Carcinoma Hepatocelular , Furanos/farmacologia , Fenantrenos , Quinonas/farmacologia , Quinases da Família src/antagonistas & inibidores , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Camundongos , Simulação de Acoplamento Molecular , Fenantrenos/farmacologia , Fosforilação , Fator de Transcrição STAT3/metabolismo , Quinases da Família src/metabolismo
19.
Nat Commun ; 12(1): 3792, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145283

RESUMO

α-Chiral alkyne is a key structural element of many bioactive compounds, chemical probes, and functional materials, and is a valuable synthon in organic synthesis. Here we report a NiH-catalysed reductive migratory hydroalkynylation of olefins with bromoalkynes that delivers the corresponding benzylic alkynylation products in high yields with excellent regioselectivities. Catalytic enantioselective hydroalkynylation of styrenes has also been realized using a simple chiral PyrOx ligand. The obtained enantioenriched benzylic alkynes are versatile synthetic intermediates and can be readily transformed into synthetically useful chiral synthons.

20.
PLoS One ; 16(5): e0251022, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33945574

RESUMO

BACKGROUND: Surgical site infections (SSIs) are common postoperative complications. Whether the use of staples or sutures makes a difference in abdominal surgery's infection rate remains elusive. METHODS: A systematic review was performed to identify randomized clinical trials comparing staples and sutures after abdominal surgeries. Eligibility criteria involved the SSI occurrence as the primary outcome and the incidence of wound dehiscence, closure time, cosmesis, and patient satisfaction as the secondary outcomes. RESULTS: Of the 278 studies identified, seven randomized controlled trials representing 3705 patients were included in this review. There was no significant difference in SSI rates between sutures and staples in general (OR = 0.98, 95% CI = 0.79-1.22, I2 = 44%, P = 0.1) or in a subgroup of gastrointestinal surgery, where subcuticular suturing was found with a comparable SSI risk with skin stapling (OR = 0.85, 95% CI = 0.66-1.09). Staple closure was associated with a shorter surgery duration, whereas sutures appeared to provide better cosmesis and patient satisfaction. Sutures and staples achieved a comparable incidence of dehiscence. There was no significant between-study publication bias. CONCLUSION: Our study demonstrated similar outcomes in SSI rate between subcuticular sutures and staples for skin closure in patients undergoing abdominal surgery.


Assuntos
Abdome/cirurgia , Procedimentos Cirúrgicos do Sistema Digestório/métodos , Grampeamento Cirúrgico/métodos , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Pele , Infecção da Ferida Cirúrgica/etiologia , Infecção da Ferida Cirúrgica/prevenção & controle , Técnicas de Sutura , Suturas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA