Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Biomed Pharmacother ; 179: 117272, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39153432

RESUMO

Calpain, a key member of the Calpain cysteine protease superfamily, performs limited protein hydrolysis in a calcium-dependent manner. Its activity is tightly regulated due to the potential for non-specific cleavage of various intracellular proteins upon aberrant activation. A thorough review of the literature from 2010 to 2023 reveals 121 references discussing cardiovascular and cerebrovascular diseases. Dysregulation of the Calpain system is associated with various pathological phenomena, including lipid metabolism disorders, inflammation, apoptosis, and excitotoxicity. Although recent studies have revealed the significant role of Calpain in cardiovascular and cerebrovascular diseases, the precise mechanisms remain incompletely understood. Exploring the potential of Calpain inhibition as a therapeutic approach for the treatment of cardiovascular and cerebrovascular diseases may emerge as a compelling area of interest for future calpain research.

2.
Food Sci Nutr ; 11(9): 4926-4947, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701204

RESUMO

Apples and their products exemplify the recently reemphasized link between dietary fruit intake and the alleviation of human disease. Their consumption does indeed improve human health due to their high phytochemical content. To identify potentially relevant articles from clinical trials, some epidemiological studies and meta-analyses, and in vitro and in vivo studies (cell cultures and animal models), PubMed was searched from January 1, 2012, to May 15, 2022. This review summarized the potential effects of apple and apple products (juices, puree, pomace, dried apples, extracts rich in apple bioactives and single apple bioactives) on health. Apples and apple products have protective effects against cardiovascular diseases, cancer, as well as mild cognitive impairment and promote hair growth, healing of burn wounds, improve the oral environment, prevent niacin-induced skin flushing, promote the relief of UV-induced skin pigmentation, and improve the symptoms of atopic dermatitis as well as cedar hay fever among others. These effects are associated with various mechanisms, such as vascular endothelial protection, blood lipids lowering, anti-inflammatory, antioxidant, antiapoptotic, anti-invasion, and antimetastatic effects. Meanwhile, it has provided an important reference for the application and development of medicine, nutrition, and other fields.

3.
Lipids Health Dis ; 22(1): 140, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653500

RESUMO

BACKGROUND: Hyperlipidemia is closely associated with dietary patterns and inflammation. However, the relationship between hyperlipidemia and the inflammatory potential of diets remains unexplored. The research was conducted to examine the relationship between hyperlipidemia and dietary inflammatory index (DII). METHODS: The data utilized in the research were acquired from the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2018. The information on dietary intake was gathered by conducting 24-h dietary recall interviews. Restricted cubic spline (RCS) and Survey-weighted logistic regression were utilized to determine the association between DII and hyperlipidemia. Furthermore, stratification analysis was carried out. RESULTS: This study included 8982 individuals with and 3458 without hyperlipidemia. Participants with hyperlipidemia exhibited higher DII scores than those without hyperlipidemia. Following adjustment for gender, age, race, education level, marital status, poverty, drinking status, diabetes, hypertension, smoking status, body mass index (BMI), chronic kidney disease (CKD), cardiovascular disease (CVD), and hemoglobin (Hb), the association between the prevalence of hyperlipidemia and DII remained significant. The RCS data demonstrated that the hyperlipidemia prevalence did not exhibit an increase until the DII score was approximately 2.78. Stratification analysis revealed that the association between DII and hyperlipidemia persisted in all subgroups. CONCLUSIONS: DII was associated with hyperlipidemia, and the threshold DII score for the risk of hyperlipidemia was 2.78.


Assuntos
Hiperlipidemias , Humanos , Inquéritos Nutricionais , Estudos Transversais , Hiperlipidemias/epidemiologia , Dieta/efeitos adversos , Índice de Massa Corporal
4.
Biomed Pharmacother ; 165: 115153, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37437377

RESUMO

BACKGROUND: The primary cause of acute cardiovascular events with high mortality is the rupture of atherosclerotic plaque followed by thrombosis. Sodium Danshensu (SDSS) has shown potential in inhibiting the inflammatory response in macrophages and preventing early plaque formation in atherosclerotic mice. However, the specific targets and detailed mechanism of action of SDSS are still unclear. OBJECTIVE: This study aims to investigate the efficacy and mechanism of SDSS in inhibiting inflammation in macrophages and stabilizing vulnerable plaques in atherosclerosis (AS). MATERIALS AND METHODS: The efficacy of SDSS in stabilizing vulnerable plaques was demonstrated using various techniques such as ultrasound, Oil Red O staining, HE staining, Masson staining, immunohistochemistry, and lipid analysis in ApoE-/- mice. Subsequently, IKKß was identified as a potential target of SDSS through protein microarray, network pharmacology analysis, and molecular docking. Additionally, ELISA, RT-qPCR, Western blotting, and immunofluorescence were employed to measure the levels of inflammatory cytokines, IKKß, and NF-κB pathway-related targets, thereby confirming the mechanism of SDSS in treating AS both in vivo and in vitro. Finally, the impact of SDSS was observed in the presence of an IKKß-specific inhibitor. RESULTS: Initially, the administration of SDSS led to a decrease in the formation and area of aortic plaque, while also stabilizing vulnerable plaques in ApoE-/- mice. Furthermore, it was identified that IKKß serves as the primary binding target of SDSS. Additionally, both in vivo and in vitro experiments demonstrated that SDSS effectively inhibits the NF-κB pathway by targeting IKKß. Lastly, the combined use of the IKKß-specific inhibitor IMD-0354 further enhanced the beneficial effects of SDSS. CONCLUSIONS: SDSS stabilized vulnerable plaques and suppressed inflammatory responses by inhibiting the NF-κB pathway through its targeting of IKKß.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , NF-kappa B/metabolismo , Quinase I-kappa B/metabolismo , Transdução de Sinais , Simulação de Acoplamento Molecular , Aterosclerose/metabolismo , Macrófagos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Apolipoproteínas E/metabolismo
5.
Mediators Inflamm ; 2023: 1097706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37292256

RESUMO

Atherosclerosis, the main pathological basis of cardiovascular disease, is a chronic inflammatory disease that severely affects the quality of human life. Resveratrol (Res) is a natural polyphenol that is a major component of many herbs and foods. The present study analyzed resveratrol from the perspective of visualization and bibliometric analysis and found that resveratrol is closely related to the inflammatory response in cardiovascular diseases (associated with atherosclerosis). To explore the specific molecular mechanism of resveratrol, network pharmacology and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used, in which HIF-1α signaling may be a key pathway in the treatment of AS. Furthermore, we induced the polarization of macrophage RAW264.7 to M1 type to generate inflammatory response by the combination of lipopolysaccharide (LPS) (200 ng/mL) + interferon-γ (IFN-γ) (2.5 ng/mL). LPS and IFN-γ increased the inflammatory factor levels of IL-1ß, TNF-α, and IL-6 in RAW264.7, and the proportion of M1-type macrophages also increased, but the expression of inflammatory factors decreased after resveratrol administration, which confirmed the anti-inflammatory effect of resveratrol in AS. In addition, we found that resveratrol downregulated the protein expression of toll-like receptor 4 (TLR4)/NF-κB/hypoxia inducible factor-1 alpha (HIF-1α). In conclusion, resveratrol has a significant anti-inflammatory effect, alleviates HIF-1α-mediated angiogenesis, and prevents the progression of AS through the TLR4/NF-κB signaling pathway.


Assuntos
Aterosclerose , NF-kappa B , Humanos , NF-kappa B/metabolismo , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios , Aterosclerose/tratamento farmacológico
6.
Drug Metab Rev ; 55(1-2): 75-93, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36803497

RESUMO

Evodiae Fructus (EF) is a common herbal medicine with thousands of years of medicinal history in China, which has been demonstrated with many promising pharmacological effects on cancer, cardiovascular diseases and Alzheimer's disease. However, there have been increasing reports of hepatotoxicity associated with EF consumption. Unfortunately, in a long term, many implicit constituents of EF as well as their toxic mechanisms remain poorly understood. Recently, metabolic activation of hepatotoxic compounds of EF to generate reactive metabolites (RMs) has been implicated. Herein, we capture metabolic reactions relevant to hepatotoxicity of these compounds. Initially, catalyzed by the hepatic cytochrome P450 enzymes (CYP450s), the hepatotoxic compounds of EF are oxidized to generate RMs. Subsequently, the highly electrophilic RMs could react with nucleophilic groups contained in biomolecules, such as hepatic proteins, enzymes, and nucleic acids to form conjugates and/or adducts, leading to a sequence of toxicological consequences. In addition, currently proposed biological pathogenesis, including oxidative stress, mitochondrial damage and dysfunction, endoplasmic reticulum (ER) stress, hepatic metabolism disorder, and cell apoptosis are represented. In short, this review updates the knowledge on the pathways of metabolic activation of seven hepatotoxic compounds of EF and provides considerable insights into the relevance of proposed molecular hepatotoxicity mechanisms from a biochemical standpoint, for the purpose of providing a theoretical guideline for the rational application of EF in clinics.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Evodia , Humanos , Evodia/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-35469165

RESUMO

Objective: To evaluate the effectiveness and safety of thrombolytic therapy combined with mild hypothermia in patients with acute cerebral infarction (ACI), based on a meta-analysis of randomized controlled trials (RCTs). Methods: PubMed, EMBASE, Cochrane Library, and Chinese National Knowledge Infrastructure Database of Controlled Trials were systematically screened for randomized controlled trials (RCTs) of thrombolytic therapy combined with mild hypothermia in treating ACI from inception to January 2021. Participation and outcomes among intervention enrollees are as follows: P, participants (patients in ACI); I, interventions (thrombolysis in combination with mild hypothermia therapy); C, controls (thrombolysis merely); O, outcomes (main outcomes are the change of NIHSS, glutathione peroxidase, superoxide dismutase, malondialdehyde, inflammatory factor interleukin-1ß, tumor necrosis factor-α, and adverse reaction). Following data extraction and quality assessment, a meta-analysis was performed using RevMan 5.3 software. Results: A total of 26 RCTs involving 2071 patients were included. Compared to thrombolysis alone, thrombolytic therapy combined with mild hypothermia leads to better therapeutic efficacy [RR = 1.23, 95% CI (1.16, 1.31)], NIHSS [MD = -2.02, 95% CI (-2.55, -1.49)], glutathione peroxidase [MD = 8.71, 95% CI (5.55, 11.87)], superoxide dismutase [MD = 16.52, 95% CI (12.31, 19.74)], malondialdehyde [MD = -1.86, 95% CI (-1.98, -1.75)], interleukin-1ß [MD = -3.48, 95% CI (-4.88, -2.08)], tumor necrosis factor-α [MD = -0.46, 95% CI (-3.39, 2.48)], and adverse reaction [RR = 0.87, 95% CI (0.63, 1.20)]. Conclusions: Thrombolytic therapy combined with mild hypothermia demonstrates a beneficial role in reducing brain nerve function impairment and inflammatory reactions in ACI subjects analysed in this meta-analysis.

8.
J Ethnopharmacol ; 289: 115028, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35077825

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Yiqi Shengsui formula (YQSSF) is a commonly used formula to treat chemotherapy-induced myelosuppression, but little is known about its therapeutic mechanisms. AIM OF THIS STUDY: This study aims to examine the effect of YQSSF in treating myelosuppression and explore its mechanism. MATERIALS AND METHODS: A myelosuppression BALB/c mouse model was established by intraperitoneal (i.p.) injection of cyclophosphamide (CTX). The efficacy of YQSSF in alleviating chemotherapy-induced myelosuppression was evaluated by blood cell count, immune organ (thymus, spleen, liver) index, bone marrow nucleated cell (BMNC) count and histopathological analysis of bone marrow and spleen. Then, ultra-performance liquid chromatograph quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was performed to analyze the ingredients of YQSSF extract. Key effects and potential mechanism of YQSSF extract in alleviating myelosuppression were predicted by network pharmacology method. Finally, cell cycle and TUNEL staining of bone marrow cells was detected to verify the key effects, and RT-qPCR or Western blotting were performed to measure the gene and protein expressions of the effect targets respectively to confirm the predicted mechanism of YQSSF for myelosuppression. RESULTS: YQSSF up-regulated the number of peripheral blood leukocytes and BMNC, reduced spleen index and liver index, improved the pathological morphology of bone marrow and spleen. A total of 40 ingredients were isolated from YQSSF extract using UPLC-Q/TOF-MS analysis. Network pharmacology revealed that YQSSF regulated both proliferation and apoptosis to alleviate myelosuppression. Finally, YQSSF decreased G0/G1 ratio, increased the proportion of bone marrow cells in S phase and proliferation index (PI), and reduced apoptotic cells in femur bone marrow. RT-qPCR and Western blotting showed that YQSSF up-regulated the expression levels of CDK4, CDK6, CyclinB1, c-Myc and Bcl-2, as well as down-regulated the expression levels of Cyt-c, Fas, Caspase-8/3 and p53. CONCLUSIONS: YQSSF promotes the proliferation and inhibits the apoptosis of bone marrow cells to relieve chemotherapy-induced myelosuppression.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclofosfamida/toxicidade , Medicamentos de Ervas Chinesas/farmacologia , Animais , Antineoplásicos Alquilantes/toxicidade , Apoptose/efeitos dos fármacos , Células da Medula Óssea/citologia , Ciclo Celular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
9.
Immun Inflamm Dis ; 10(3): e581, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34904398

RESUMO

NLRP3 inflammasome activation in macrophages fuels sterile inflammation, which has been tied with metabolic reprogramming characterized by high glycolysis and low oxidative phosphorylation. The key enzymes in glycolysis and glycolysis-related products can regulate and activate NLRP3 inflammasome. In turn, NLRP3 inflammasome is considered to affect glycolysis, as well. However, the exact mechanism remains ambiguous. On the basis of these findings, the focus of this review is mainly on the developments in our understanding of interaction between NLRP3 inflammasome activation and glycolysis in macrophages, and small molecule compounds that influence the activation of NLRP3 inflammasomes by regulating glycolysis in macrophages. The application of this interaction in the treatment of diseases is also discussed. This paper may yield valuable clues for development of novel therapeutic agent for NLRP3 inflammasome-related diseases.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Glicólise , Humanos , Inflamassomos/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
10.
Sci Rep ; 11(1): 19305, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588488

RESUMO

NLRP3 inflammasome is a vital player in macrophages pyroptosis, which is a type of proinflammatory cell-death and takes part in the pathogenesis of atherosclerosis. In this study, we used apoE-/- mice and ox-LDL induced THP-1 derived macrophages to explore the mechanisms of MCC950, a selective NLRP3 inhibitor in treating atherosclerosis. For the in vivo study, MCC950 was intraperitoneal injected to 8-week-old apoE-/- mice fed with high-fat diet for 12 weeks. For the in vitro study, THP-1 derived macrophages were treated with ox-LDL and MCC950 for 48 h. MCC950 administration reduced plaque areas and macrophages contents, but did not improve the serum lipid profiles in aortic root of apoE-/- mice. MCC950 inhibited the activation of NLRP3/ASC/Caspase-1/GSDMD-N axis, and alleviated macrophages pyroptosis and the production of IL-1ß and IL-18 both in aorta and in cell lysates. However, MCC950 did not affect the expression of TLR4 or the mRNA levels of NLRP3 inflammasome and its downstream proteins, suggesting that MCC950 had no effects on the priming of NLRP3 inflammasome activation in macrophages. The anti-atherosclerotic mechanisms of MCC950 on attenuating macrophages inflammation and pyroptosis involved in inhibiting the assembly and activation of NLRP3 inflammasome, rather than interrupting its priming.


Assuntos
Aterosclerose/prevenção & controle , Furanos/farmacologia , Indenos/farmacologia , Macrófagos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Piroptose/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Aterosclerose/genética , Aterosclerose/imunologia , Modelos Animais de Doenças , Furanos/uso terapêutico , Humanos , Indenos/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout para ApoE , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/imunologia , Sulfonamidas/uso terapêutico
11.
Curr Atheroscler Rep ; 22(8): 31, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32556603

RESUMO

PURPOSE: Macrophages play vital roles in the development of atherosclerosis in responding to lipid accumulation and inflammation. Macrophages were classified as inflammatory (M1) and alternatively activated (M2) macrophage types based on results of in vitro experiments. On the other hand, the composition of macrophages in vivo is more complex and remains unresolved. This review summarizes the transcriptional variations of macrophages in atherosclerosis plaques that were discovered by single-cell RNA sequencing (scRNA-seq) to better understand their contribution to atherosclerosis. RECENT FINDINGS: ScRNA-seq provides a more detailed transcriptional landscape of macrophages in atherosclerosis, which challenges the traditional view. By mining the data of GSE97310, we discovered the transcriptional variations of macrophages in LDLR-/- mice that were fed with high-fat diet (HFD) for 11 and 20 weeks. Cells were represented in a two-dimensional tSNE plane and clusters were identified and annotated via Seurat and SingleR respectively, which were R toolkits for single-cell genomics. The results showed that in healthy conditions, Trem2hi (high expression of triggering receptors expressed on myeloid cells 2)-positive, inflammatory, and resident-like macrophages make up 68%, 18%, and 6% of total macrophages respectively. When mice were fed with HFD for 11 weeks, Trem2hi, monocytes, and monocyte-derived dendritic cells take possession of 40%, 18%, and 17% of total macrophages respectively. After 20 weeks of HFD feeding, Trem2hi, inflammatory, and resident-like macrophages occupied 12%, 37%, and 35% of total macrophages respectively. The phenotypes of macrophages are very different from the previous studies. In general, Trem2hi macrophages are the most abundant population in healthy mice, while the proportion of monocytes increases after 11 weeks of HFD. Most importantly, inflammatory and resident-like macrophages make up 70% of the macrophage populations after 20 weeks of HFD. These strongly indicate that inflammatory and resident-like macrophages promote the progression of atherosclerosis plaques.


Assuntos
Aterosclerose/metabolismo , Macrófagos/classificação , Macrófagos/metabolismo , Placa Aterosclerótica/metabolismo , Animais , Células Dendríticas/metabolismo , Humanos , Inflamação/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Monócitos/metabolismo , Fenótipo , RNA-Seq/métodos , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Análise de Célula Única/métodos , Transcriptoma
12.
J Cell Commun Signal ; 14(3): 293-301, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32236886

RESUMO

This review focuses on current advances in researches of gasdermin family. The distinctive expression patterns and biological roles of members in this family were discussed. Most of them exhibit pore-forming activity on cell membranes and are executors for programmed cell death with cytokines release, and play roles in cancers and inflammation-driven diseases. Therefore, they can be used as potential therapeutic targets to treat related diseases.

13.
Cell Reprogram ; 20(3): 178-186, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29782191

RESUMO

Mesenchymal stem cells (MSCs) were regarded as one of the most promising type of seed cells in tissue engineering due to its easy accessibility and multipotent feature of being able to differentiate into adipocyte, osteoblast, cardiomyocytes, and neurons. For years, MSCs have been applied in treating cardiovascular disease, reconstructing kidney injury, and remodeling immune system with remarkable achievements. Basic researches revealed that its clinic effects are not only due to their pluripotent ability but also through their paracrine function that they synthesize and secrete a broad spectrum of growth factors and cytokines. Recent studies show that exosomes is the main paracrine executor of MSCs. The lipid bilayer of exosome maintains its stability and integrity and keeps biological potency of biological substance within it. MSC-derived exosomes were shown to be successful in treating many diseases, including tumor and cardiovascular diseases. However, the exact composition of MSC-derived exosomes is not known yet. In this review, we will discuss the lipid, protein, and microRNA contents within MSC-derived exosomes based on current studies to guide further research and clinical applications of MSC-derived exosomes.


Assuntos
Exossomos/metabolismo , Lipídeos/química , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Proteínas/metabolismo , Animais , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Transporte Proteico
14.
Heliyon ; 1(1): e00020, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27441214

RESUMO

OBJECTIVE: To explore the neuroprotective mechanism of Ginkgolides or Ginkgo flavonoids on the TNF-α induced apoptosis of cultured rat hippocampal neurons. MATERIALS AND METHODS: Primary hippocampal neurons were isolated from rat brains and cultured with (model group) or without (control group) addition of tumor necrosis factor-α (TNF-α, final concentration of 40 ng/ml) to induce apoptosis. TNF-α induced cultures were divided into model group, Ginkgolides pre-treatment group (20 µg/ml) and Ginkgo flavonoids pre-treatment group (12 µg/ml). CCK8 was used to assess cell viability while Hoechst 33258 staining, Flow cytometry and TUNEL kits were all employed to determine apoptotic neurons. Expression levels of Bcl-2, Bax, Caspase-3, Caspase-7, Caspase-8, Caspase-9 and Cytc were estimated by qRT-PCR. RESULTS: Cell viability was significantly improved in Ginkgolides pre-treatment group or Ginkgo flavonoids pre-treatment group compared with that in model group. Apoptotic neurons were significantly less in Ginkgolides pre-treatment group or Ginkgo flavonoids pre-treatment group than those in model group. Transcription levels of caspase-7, caspase-8, caspase-3, caspase-9, Bax and Cytc were down-regulated, while transcription levels of Bcl-2 was up-regulated in Ginkgolides pre-treatment or Ginkgo flavonoids pre-treatment group than those in model group. CONCLUSIONS: Ginkgolides and Ginkgo flavonoids might protect against apoptosis of hippocampal neurons through inhibiting death receptor pathway or mitochondrial pathway under TNF-α background.

15.
Stem Cells Int ; 2014: 162024, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25101130

RESUMO

A growing body of evidence supports the argument that bone marrow-derived mesenchymal stem cells (MSCs) can differentiate into cardiomyocyte-like cells in an appropriate cellular environment, but the differentiation rate is low. A cocktail method was designed: we investigated the role of 5-azacytidine (5-aza), salvianolic acid B (SalB), and cardiomyocyte lysis medium (CLM) in inducing MSCs to acquire the phenotypical characteristics of cardiomyocytes. The fourth-passage MSCs were treated with 5-aza, SalB, CLM, 5-aza+salB, 5-aza+CLM, SalB+CLM, and 5-aza+SalB+CLM for 2 weeks. Immunofluorescence results showed that cTnT expression in the 5-aza+salB+CLM group was stronger than other groups. Real-time qPCR and Western blotting analyses showed that cTnT, alpha-cardiac actin, mef-2c, Cx43, and GSK-3beta expression increased while beta-catenin expression decreased. The salB+5-aza+CLM group had the most evident effects. SalB combined with 5-aza and CLM improved cardiomyocyte differentiation from MSCs. In the MSCs differentiation process, the Wnt/beta-catenin signaling pathway had been inhibited.

16.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 32(5): 671-5, 2012 May.
Artigo em Chinês | MEDLINE | ID: mdl-22679732

RESUMO

OBJECTIVE: To observe the proliferation state of transplanted cells in acute myocardial infarction (AMI) rats, and the endothelial progenitor cells (EPCs) preconditioned by salvianolic acid B in different ratios with the bone mesenchymal stem cells (BMSCs). METHODS: The cultivation and purification of EPCs were performed by density-gradient centrifugation and plastic adherence method. Two types of cells were identified by immunocytochemical method (CD34, CD133, and CD44). The rat model of AMI was prepared by ligation of left anterior descending artery. The EPCs were pre-treated with the optimal concentration of salvianolic acid B (8 microg/ mL). They were mixed with BMSCs in different proportions (EPCs/BMSCs in the ratio of 1:1, 2:1, 4:1, and 8:1, respectively). BMSCs and EPCs were injected into the myocardial infarction area. The infarcted area was determined by the N-BT staining and hematoxylin-eosin staining. The expression of Ki-67 was detected by immunohistochemical assay. RESULTS: Compared with the model group (19.60% +/- 3.23%), the myocardial infarction area of each implanted group obviously decreased (P < 0.05). Of them, the decrease was most obvious in the 4:1 group (11.37% +/- 2.18%) and the 8:1 group (9.23% +/- 2.35%, P < 0.05). Compared with the model group (cell/high magnification, 5.17 +/- 2.31), the Ki-67 positive cell number of each implanted groups significantly increased (P < 0.05). Of them, the Ki-67 positive cell number was obviously higher in the 8:1 group (15.00 +/- 3.16, P < 0.05). CONCLUSIONS: EPCs pretreated by salvianolic acid B combined with BMSCs could reduce the myocardial infarcted area, improve the proliferation of BMSCs in the peripheral infarction and local ischemia. Besides, along with the increase of the implant proportion of EPCs, the infarct area was gradually reduced, and the proliferative expression was gradually enhanced.


Assuntos
Benzofuranos/farmacologia , Proliferação de Células , Células-Tronco Mesenquimais/efeitos dos fármacos , Infarto do Miocárdio/patologia , Condicionamento Pré-Transplante , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/metabolismo , Ratos , Ratos Wistar
17.
Clin Exp Pharmacol Physiol ; 34(7): 624-31, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17581219

RESUMO

1. The aim of the present study was to examine if and how rat hypoxia-induced astrocytes affect the migration of neural progenitor cells (NPC) and to investigate the expression patterns of some chemokines, such as vascular endothelial growth factor (VEGF), stem cell factor (SCF), stromal-derived factor-1alpha (SDF-1alpha), fractalkine and monocyte chemoattractant protein-1 (MCP-1) in hypoxia-induced astrocytes and their contribution to NPC migration in vitro. 2. Costar Transwell inserts were used for the chemotaxis assay and quantified changes in the chemokines mRNA for between 0 h and 24 h posthypoxia were tested using real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. The results showed that the chemotaxis of astrocyte cells exposed to hypoxia for 18 h reached a peak value, whereas the chemotaxis of astrocytes exposed to hypoxia for 24 h began to decrease compared with those exposed to hypoxia for 18 h. Hypoxia upregulated chemokine VEGF, SCF, SDF-1alpha and MCP-1 expression in a time-dependent manner but downregulated fractalkine expression in astrocytes. In addition, the time points of the peak expressions for VEGF, SCF, SDF-1alpha and MCP-1 were similar to the time point of maximum NPC migration. 3. Specific inhibitors that block the binding of specific chemokines to its receptors were used for analysing the contribution of the chemokine to NPC migration. When VEGF, SCF, SDF-1alpha and MCP-1 were each inhibited independently, NPC migration was reduced. When they were inhibited together, NPC migration was obviously inhibited compared with both the control and single-block cultures, which implies that the migratory effect of hypoxia-induced astrocytes was synergetic by several chemokines. 4. In conclusion, we demonstrated the time-dependent manner of NPC migration promotion by hypoxia-induced astrocytes. We also provide evidence that soluble factors, such as VEGF, SCF, SDF-1alpha and MCP-1, released from astrocytes, direct the migration of NPC under hypoxic circumstances. Given that astrocytes were activated to all hypoxia-ischaemia diseases, these results indicate an important role for astrocytes in directing NPC replacement therapy in the central nervous system.


Assuntos
Astrócitos/metabolismo , Quimiocina CCL2/metabolismo , Quimiocinas CXC/metabolismo , Quimiotaxia , Neurônios/metabolismo , Fator de Células-Tronco/metabolismo , Células-Tronco/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular , Hipóxia Celular , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Quimiocina CCL2/genética , Quimiocina CX3CL1 , Quimiocina CXCL12 , Quimiocinas CX3C/metabolismo , Quimiocinas CXC/genética , Técnicas de Cocultura , Meios de Cultivo Condicionados/metabolismo , Regulação para Baixo , Proteínas de Membrana/metabolismo , Comunicação Parácrina , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Fator de Células-Tronco/genética , Fatores de Tempo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA