Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(28): 30698-30707, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39035959

RESUMO

Developing novel drugs from natural products has proven to be a very effective strategy. Neocryptolepine was isolated from Cryptolepis sanguinolenta, a traditional endemic African herb, which exerts a wide range of biological activities such as antimalaria, antibacterial, and antitumor. 2-Chloro-8-methoxy-5-methyl-5H-indolo [2,3-b] quinoline (compound 49) was synthesized, and its cytotoxicity was assessed on pancreatic cancer PANC-1 cells, colorectal cancer HCT116 cells, liver cancer SMMC-7721 cells, and gastric cancer AGS cells in vitro. The results of the in vitro assay showed that compound 49 exerted remarkable cytotoxicity on colorectal cancer HCT116 and Caco-2 cells. The cytotoxicity of compound 49 to colorectal cancer HCT116 cells was 17 times higher than that of neocryptolepine and to human normal intestinal epithelial HIEC cells was significantly reduced. Compound 49 exhibited significant cytotoxicity against the colorectal cancer HCT116 and Caco-2 cells, with IC50 of 0.35 and 0.54 µM, respectively. The mechanism of cytotoxicity of compound 49 to colorectal cancer HCT116 and Caco-2 cells was further investigated. The results showed that compound 49 could inhibit colony formation and cell migration. Moreover, compound 49 could arrest the cell cycle at the G2/M phase, promote the production of reactive oxygen species, reduce mitochondrial membrane potential, and induce apoptosis. The results of Western blot indicated that compound 49 showed cytotoxicity on HCT116 and Caco-2 cells by modulating the PI3K/AKT/mTOR signaling pathway. In conclusion, these results suggested that compound 49 may be a potentially promising lead compound for the treatment of colorectal cancer.

2.
Small Methods ; : e2301644, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593356

RESUMO

Surface-assisted laser desorption/ionization (SALDI) mass spectrometry imaging (MSI) holds great value in spatial metabolomics and tumor diagnosis. Tissue imprinting on the SALDI target can avoid laser-induced tissue ablation and simplifies the sample preparation. However, the tissue imprinting process always causes lateral diffusion of biomolecules, thereby losing the fidelity of metabolite distribution on tissue. Herein, a membrane-mediated imprinting mass spectrometry imaging (MMI-MSI) strategy is proposed using isoporous nuclepore track-etched membrane as a mediating imprinting layer to selectively transport metabolites through uniform and vertical pores onto silicon nanowires (SiNWs) array. Compared with conventional direct imprinting technique, MMI-MSI can not only exclude the adsorption of large biomolecules but also avoid the lateral diffusion of metabolites. The whole time for MMI-based sample preparation can be reduced to 2 min, and the lipid peak number can increase from 46 to 113 in kidney tissue detection. Meanwhile, higher resolution of MSI can be achieved due to the confinement effect of the pore channel in the diffusion of metabolites. Based on MMI-MSI, the tumor margins of liver cancer can be clearly discriminated and their different subtypes can be precisely classified. This work demonstrates MMI-MSI is a rapid, highly sensitive, robust and high-resolution technique for spatially-resolved metabolomics and pathological diagnosis.

3.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894822

RESUMO

Chemotherapy is commonly used clinically to treat colorectal cancer, but it is usually prone to drug resistance, so novel drugs need to be developed continuously to treat colorectal cancer. Neocryptolepine derivatives have attracted a lot of attention because of their good cytotoxic activity; however, cytotoxicity studies on colorectal cancer cells are scarce. In this study, the cytotoxicity of 8-methoxy-2,5-dimethyl-5H-indolo[2,3-b] quinoline (MMNC) in colorectal cells was evaluated. The results showed that MMNC inhibits the proliferation of HCT116 and Caco-2 cells, blocks the cell cycle in the G2/M phase, decreases the cell mitochondrial membrane potential and induces apoptosis. In addition, the results of western blot experiments suggest that MMNC exerts cytotoxicity by inhibiting the expression of PI3K/AKT/mTOR signaling pathway-related proteins. Based on these results, MMNC is a promising lead compound for anticancer activity in the treatment of human colorectal cancer.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Quinolinas , Humanos , Antineoplásicos/farmacologia , Apoptose , Células CACO-2 , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolinas/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
4.
Theranostics ; 13(10): 3188-3203, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351171

RESUMO

Diabetic kidney disease (DKD) is the most common microvascular complication of diabetes, and there is an urgent need to discover reliable biomarkers for early diagnosis. Here, we established an effective urine multi-omics platform and integrated metabolomics and peptidomics to investigate the biological changes during DKD pathogenesis. Methods: Totally 766 volunteers (221 HC, 198 T2DM, 175 early DKD, 125 overt DKD, and 47 grey-zone T2DM patients with abnormal urinary mALB concentration) were included in this study. Non-targeted metabolic fingerprints of urine samples were acquired on matrix-free LDI-MS platform by the tip-contact extraction method using fluorinated ethylene propylene coated silicon nanowires chips (FEP@SiNWs), while peptide profiles hidden in urine samples were uncovered by MALDI-TOF MS after capturing urine peptides by porous silicon microparticles. Results: After multivariate analysis, ten metabolites and six peptides were verified to be stepwise regulated in different DKD stages. The altered metabolic pathways and biological processes associated with the DKD pathogenesis were concentrated in amino acid metabolism and cellular protein metabolic process, which were supported by renal transcriptomics. Interestingly, multi-omics significantly increased the diagnostic accuracy for both early DKD diagnosis and DKD status discrimination. Combined with machine learning, a stepwise prediction model was constructed and 89.9% of HC, 75.5% of T2DM, 69.6% of early DKD and 75.7% of overt DKD subjects in the external validation cohort were correctly classified. In addition, 87.5% of grey-zone patients were successfully distinguished from T2DM patients. Conclusion: This multi-omics platform displayed a satisfactory ability to explore molecular information and provided a new insight for establishing effective DKD management.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/metabolismo , Silício , Metabolômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Peptídeos , Diabetes Mellitus Tipo 2/metabolismo
5.
J Proteome Res ; 22(6): 1855-1867, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37218629

RESUMO

Cholangiocarcinoma (CCA) is an aggressive malignant tumor with a poor prognosis. Carbohydrate antigen 19-9 is an essential biomarker for CCA diagnosis, but its low sensitivity (72%) makes the diagnosis unreliable. To explore potential biomarkers for the diagnosis of CCA, a high-throughput nanoassisted laser desorption ionization mass spectrometry technique was constructed. We performed serum lipidomics and peptidomics analyses from 112 patients with CCA and 123 patients with benign biliary diseases. Lipidomics analysis showed that various lipids, such as glycerophospholipids, glycerides, and sphingolipids, were perturbed. Peptidomics analysis revealed perturbations of multiple proteins involved in the coagulation cascade, lipid transport, and so on. After data mining, 25 characteristic molecules including 20 lipids and 5 peptides were identified as potential diagnostic biomarkers. After screening various machine learning algorithms, artificial neural network was selected to construct a multiomics model for CCA diagnosis with 96.5% sensitivity and 96.4% specificity. The sensitivity and specificity of the model in the independent test cohort were 93.8 and 87.5%, respectively. Furthermore, integrated analysis with transcriptomic data in the cancer genome atlas confirmed that genes altered in CCA significantly affected multiple lipid- and protein-related pathways. Data are available via MetaboLights with the identifier MTBLS6712.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Biomarcadores Tumorais , Multiômica , Neoplasias dos Ductos Biliares/diagnóstico , Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/genética , Espectrometria de Massas , Ductos Biliares Intra-Hepáticos/metabolismo , Lipídeos
6.
J Leukoc Biol ; 113(4): 365-375, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36843303

RESUMO

Periodontitis is an inflammatory disease characterized by the destruction of periodontal tissues, and its etiology is related to several systemic factors. At present, the destruction of periodontal tissues is considered to be the result of inflammation resolution disorders. Efferocytosis plays an important role in the resolution of inflammation, and defective efferocytosis is an essential factor in the persistence of many chronic inflammatory diseases. Therefore, this review will describe the mechanisms involved in the efferocytosis of macrophages in the pathogenesis of periodontitis and highlight emerging therapeutic strategies to provide new ideas for future periodontal treatment.


Assuntos
Neutrófilos , Periodontite , Humanos , Fagocitose , Periodontite/etiologia , Periodontite/terapia , Inflamação , Macrófagos , Apoptose
7.
Eur J Pharmacol ; 938: 175408, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36442620

RESUMO

Gastric cancer is highly heterogeneous and there is still a lack of efficient, low-toxicity small molecule compounds for the treatment of gastric cancer. Natural products are important sources for the development of antitumor compounds. Therefore, it is promising strategy to find the lead compound of anti-gastric cancer agents by structural modification of natural products. The aim of this study was to synthesize a novel neocryptolepine derivative CFNC and explore its potential anti-gastric cancer effect and molecular mechanism. The MTT assay showed that the IC50 of CFNC on AGS cells reached 148 nM. CFNC arrested AGS cells in the G2/M phase of the cell cycle. Furthermore, CFNC inhibited cell proliferation and migration, leading to the loss of membrane potential by causing mitochondrial dysfunction, which induced the apoptosis of AGS cells. Western blot assay suggested that CFNC could inhibit the expression of important proteins in the PI3K/AKT/mTOR signaling pathway. These results showed that CFNC exhibited strong cytotoxic activity in gastric cancer cell lines by regulating the PI3K/AKT/mTOR signaling pathway. Taken together, CFNC could be a promising lead compound for the clinical treatment of gastric cancer.


Assuntos
Antineoplásicos , Produtos Biológicos , Neoplasias Gástricas , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Neoplasias Gástricas/patologia , Apoptose , Proliferação de Células , Antineoplásicos/uso terapêutico , Produtos Biológicos/farmacologia
8.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36233226

RESUMO

Natural products play an important role in drug development and lead compound synthesis. Neocryptolepine is a polycyclic quinoline compound isolated from Cryptolepis sanguinolent. The cytotoxicity of neocryptolepine to gastric cancer cells AGS, MKN45, HGC27, and SGC7901 was not very strong, and it also had certain toxicity to gastric mucosa cells GES-1. Therefore, a series of neocryptolepine derivatives were synthesized by the modification of the structure of neocryptolepine, and their cytotoxicity was evaluated. The results showed that compounds C5 and C8 exhibited strong cytotoxicity to AGS cells. The cell colony formation and cell migration experiments suggested that compounds C5 and C8 could inhibit the proliferation and cell migration of AGS and HGC27 cells. Cell cycle and apoptosis experiments showed that compounds C5 and C8 did not cause the apoptosis of AGS and HGC27 cells but, mainly, caused cell necrosis. Compound C5 had no significant effect on AGS and HGC27 cell cycles at low concentration. After treatment with AGS cells for 24 h at high concentration, compound C5 could significantly arrest the AGS cell cycle in the G2/M phase. Compound C8 had no significant effect on the AGS and HGC27 cell cycles. The results of molecular docking and Western blot showed that compounds C5 and C8 might induce cytotoxicity through the PI3K/AKT signaling pathway. Therefore, compounds C5 and C8 may be promising lead compounds for the treatment of gastric cancer.


Assuntos
Antineoplásicos , Produtos Biológicos , Quinolinas , Neoplasias Gástricas , Alcaloides , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolinas/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo
9.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887375

RESUMO

Isaindigotone is an alkaloid containing a pyrrolo-[2,1-b]quinazoline moiety conjugated with a benzylidene group and isolated from the root of Isatis indigotca Fort. However, further anticancer activities of this alkaloid and its derivatives have not been fully explored. In this work, a novel isaindigotone derivative was synthesized and three different gastric cell lines and one human epithelial gastric cell line were used to study the anti-proliferation effects of the novel isaindigotone derivative BLG26. HGC27 cells and AGS cells were used to further explore the potential mechanisms. BLG26 exhibited better anti-proliferation activities in AGS cells with a half-maximal inhibitory concentration (IC50) of 1.45 µM. BLG26 caused mitochondrial membrane potential loss and induced apoptosis in both HGC27 cells and AGS cells by suppressing mitochondrial apoptotic pathway and PI3K/AKT/mTOR axis. Acute toxicity experiment showed that LD50 (median lethal dose) of BLG26 was above 1000.0 mg/kg. This research suggested that BLG26 can be a potential candidate for the treatment of gastric cancer.


Assuntos
Alcaloides , Antineoplásicos , Neoplasias Gástricas , Alcaloides/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Quinazolinas/farmacologia , Transdução de Sinais , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo
10.
Front Bioeng Biotechnol ; 10: 898240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677304

RESUMO

Cancer is second only to heart disease as a cause of death, despite improvements in its early diagnosis and precision medicine. Due to the limitations of commonly used anticancer methods such as surgery, radiotherapy and chemotherapy, biological therapy, especially probiotics such as lactic acid bacteria, has received widespread attention. Lactobacillus has been proven to inhibit the proliferation of a variety of cancer cells. In this work, the effects of the cell-free culture supernatant of serofluid dish (CCS1) and the cell-free culture supernatant of Lactiplantibacillus plantarum YT013 (CCS2) isolated from serofluid dish on AGS, HCT116, HepG2 and PANC-1 cells were investigated. Based on the CCK-8 assay, CCS1 and CCS2 were shown to suppress the growth of cancer cells in a concentration-dependent manner. The IC50 values of CCS2 of AGS, HCT116, HepG2 and PANC-1 cells were 346.51 ± 35.28, 1207.69 ± 333.18, 650.94 ± 123.78 and 808.96 ± 126.27 µg/ml, respectively. In addition, the results of fluorescence microscopy showed that CCS2 changed cell morphology and treated with CCS2 (200, 400 and 800 µg/ml) for 48 h, AGS cell apoptosis was quantitatively surveyed by flow cytometry, showing 25.0, 34.1, and 42.6% total apoptotic cells. Moreover, western blotting confirmed that BAX, BAD and Caspase-3/8/9 were significantly upregulated and that BCL-2 was significantly downregulated in AGS cells treated with CCS2. These results indicated that CCS2 might lead to apoptosis via the endogenous mitochondrial apoptotic pathway. In summary, Lactiplantibacillus plantarum YT013 may be considered a good candidate for anticancer therapies.

11.
Anal Chem ; 94(24): 8570-8579, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35670384

RESUMO

Serum lipid metabolites have been emerging as ideal biomarkers for disease diagnosis and prediction. In the current stage, nontargeted or targeted lipidomic research mainly relies on a liquid chromatography-mass spectrometry (LC-MS) platform, but future clinical applications need more robust and high-speed platforms. Surface-assisted laser desorption ionization mass spectrometry (SALDI-MS) has shown excellent advantages in the high-speed analysis of lipid metabolites. However, the platform in the positive ion mode is more inclined to target a certain class of lipids, leading to the low coverage of lipid detection and limiting its practical translation to clinical applications. Herein, we proposed a dual-mechanism-driven strategy for high-coverage detection of serum lipids on a novel SALDI-MS target, which is a composite nanostructure comprising vertical silicon nanowires (VSiNWs) decorated with AuNPs and polydopamine (VSiNW-Au-PDA). The performance of laser desorption and ionization on the target can be enhanced by charge-driven desorption coupled with thermal-driven desorption. Simultaneous detection of 236 serum lipids (S/N ≥ 5) including neutral and polar lipids can be achieved in the positive ion mode. Among these, 107 lipid peaks were successfully identified. When combined with VSiNW-Au-PDA and VSiNW chips, 479 lipid peaks can be detected in serum samples in positive and negative ion modes, respectively. Based on the platform, serum samples from 57 hepatocellular carcinoma (HCC) patients and 76 healthy controls were analyzed. After data mining, 14 lipids containing different lipid types (TAG, CE, PC) were selected as potential lipidomic biomarkers. With the assistance of an artificial neural network, a diagnostic model with a sensitivity of 92.7% and a specificity of 96% was constructed for HCC diagnosis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas Metálicas , Carcinoma Hepatocelular/diagnóstico , Ouro , Humanos , Lipídeos/análise , Neoplasias Hepáticas/diagnóstico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
12.
Eur J Pharmacol ; 928: 175120, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35753402

RESUMO

1H-imidazole [4,5-f][1,10] phenanthroline is a promising chemical structure for cancer treatment. Herein, we synthesized a novel 1H-imidazole [4,5-f][1,10] phenanthroline derivative named IPM714 and found it exhibited selectively colorectal cancer (CRC) cells inhibitory activities, with half maximal inhibitory concentration (IC50) of 1.74 µM and 2 µM in HCT116 cells and SW480 cells, respectively. The present study is intended to explore the cytotoxicity of IPM714 in cancer cells of various types and its anticancer mechanism in vitro. Cellular functional analyses indicated IPM714 can arrest HCT116 cell cycle in S phase and induce apoptosis in HCT116 and SW480 cells. Western blot and molecular docking showed that IPM714 may suppress PI3K/AKT/mTOR pathway to inhibit cell proliferation and regulate cell cycle as well as apoptosis. This study proved IPM714 to be a promising drug in CRC therapy.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Células HCT116 , Humanos , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Simulação de Acoplamento Molecular , Fenantrolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo
13.
J Enzyme Inhib Med Chem ; 37(1): 1212-1226, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35450499

RESUMO

A series of novel derivatives of isaindigotone, which comes from the root of isaits indinatca Fort, were synthesised (Compound 1-26). Four human gastrointestinal cancer cells (HCT116, PANC-1, SMMC-7721, and AGS) were employed to evaluate the anti-proliferative activity. Among them, Compound 6 displayed the most effective inhibitory activity on AGS cells with an IC50 (50% inhibitory concentration) value of 2.2 µM. The potential mechanism study suggested that Compound 6 induced apoptosis in AGS cells. The collapse of mitochondrial membrane potential (MMP) in AGS cells was proved. In docking analysis, good affinity interaction between Compound 6 and AKT1 was discovered. Treatment of AGS cells with Compound 6 also resulted in significant suppression of PI3K/AKT/mTOR signal pathway. The collapse of MMP and suppression of PI3K/AKT/mTOR signal pathway may be responsible for induction of apoptosis. This derivative Compound 6 could be useful as an underlying anti-tumour agent for treatment of gastric cancer.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Humanos , Alcaloides , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Quinazolinas , Neoplasias Gástricas/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo
14.
ACS Nano ; 16(4): 6916-6928, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35416655

RESUMO

Spatially resolved tissue lipidomics is essential for accurate intraoperative and postoperative cancer diagnosis by revealing molecular information in the tumor microenvironment. Matrix-free laser desorption ionization mass spectrometry imaging (LDI-MSI) is an emerging attractive technology for label-free visualization of metabolites distributions in biological specimens. However, the development of LDI-MSI technology that could conveniently and authentically reveal molecular distribution on tissue samples is still a challenge. Herein, we present a tissue imprinting technology by retaining tissue lipids on 2D nanoflakes-capped silicon nanowires (SiNWs) for further mass spectrometry imaging and cancer diagnosis. The 2D nanoflakes were prepared by liquid exfoliation of molybdenum disulfide (MoS2) with nitrogen-doped graphene quantum dots (NGQDs), which serve as both intercalation agent and dispersant. The obtained NGQD@MoS2 nanoflakes were then decorated on the tip of vertical SiNWs, forming a hybrid NGQD@MoS2/SiNWs nanostructure, which display excellent lipid extraction ability, enhanced LDI efficiency and molecule imaging capability. The peak number and total ion intensity of different lipids species on animal lung tissues obtained by tissue imprinting LDI-MSI on NGQD@MoS2/SiNWs were ∼4-5 times greater than those on SiNWs substrate. As a proof-of-concept demonstration, the NGQD@MoS2/SiNWs nanostructure was further applied to visualize phospholipids on sliced non small cell lung cancer (NSCLC) tissue along with the adjacent normal tissue. On the basis of selected feature lipids and machine learning algorithm, a prediction model was constructed to discriminate NSCLC tissues from the adjacent normal tissues with an accuracy of 100% for the discovery cohort and 91.7% for the independent validation cohort.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanofios , Animais , Lipidômica , Silício/química , Nanofios/química , Molibdênio , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Imagem Molecular , Lipídeos/análise , Microambiente Tumoral
15.
Front Pharmacol ; 13: 841918, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308221

RESUMO

Colorectal cancer (CRC) is a common clinical malignant tumor and closely related to intestinal microbiome disorders. Especially, Fusobacterium nucleatum (F. nucleatum) is one of the most prevalent pathogens in CRC. However, its change in CRC patients of Northwest China, an area with a high incidence of gastrointestinal tumors, is unclear, and therapeutic strategies targeting F. nucleatum remain unresolved. Here, fecal samples of healthy people and CRC patients were studied using 16S rRNA sequencing to explore microbial community alterations. Additionally, vanillin derivate (IPM711 and IPM712) intervention by coculture with CRC cells and potential mechanism were investigated. Results showed that intestinal microbial homeostasis was gradually dysregulated, and the abundance of Fusobacterium was higher in CRC patients. Moreover, IPM711 and IPM712 showed better anti-F. nucleatum activity than vanillin by increasing cell membrane permeability and destroying bacterial integrity. In addition, IPM711 and IPM712 could downregulate the expression of E-cadherin and ß-catenin, thus, suppressing the migration of HCT116. Collectively, IPM711 and IPM712 have both anticolorectal cancer and anti-F. nucleatum activities, providing potential natural product drug candidates for microbe-targeted strategies for the treatment of CRC.

16.
J Nat Prod ; 85(4): 963-971, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35191714

RESUMO

Neocryptolepine derivatives have attracted great interest because of their unique cytotoxic activity. 8-Fluoroneocryptolepine (8FNC) was synthesized, and its cytotoxicity was evaluated by MTT assay in AGS gastric cancer cells and gastric mucosa GES-1 cells. 8-Fluoroneocryptolepine showed greater selectivity and cytotoxicity to AGS cells than the cisplatin (CIS) and fluorouracil (5-Fu) commonly used in clinical treatment of gastric cancer. Most importantly, we significantly improved the cytotoxic effect of 8FNC against AGS cells by structural modification and reduced the cytotoxicity against GES-1 cells compared with neocryptolepine. We further evaluated the activity of 8FNC against AGS cells in vitro. Our results indicate that 8FNC arrests the AGS cell cycle in the G2/M phase, reduces the mitochondrial membrane potential of AGS cells, and drives the initiation of apoptotic body formation in 8FNC-induced apoptosis. Moreover, 8FNC exhibits strong inhibitory effects on AGS cell migration. Studies on the molecular mechanisms of the cytotoxic activities of 8FNC revealed that it may play a significant role in the inhibitory effect on AGS human gastric cancer cells through the PI3K/AKT signaling pathway. In conclusion, 8FNC may become a promising lead compound in the development of potential clinical drug candidates for the treatment of gastric cancer.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Antineoplásicos/química , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Fluoruracila/farmacologia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Gástricas/tratamento farmacológico
17.
Eur J Pharmacol ; 915: 174514, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34560078

RESUMO

1H-imidazo[4,5-f][1,10]phenanthroline (IPM713) is a type of tricyclic conjugated rigid planar structure with potential medical applications, but its anticancer activity has not yet been fully studied. In the present research, cells from seven different cancer types were used to study the anticancer effect, and IPM713 was found to inhibit the colorectal cancer cell line HCT116 most significantly, with a half maximal inhibitory concentration (IC50) of 1.7 µM. The mechanisms by which IPM713 exerts anti-colorectal cancer activity were studied. IPM713 blocked the cell cycle in G0/G1 phase and induced apoptosis by suppressing the PI3K/AKT/mTOR axis. In addition, an acute toxicity test showed that the median lethal dose (LD50) was above 5000 mg/kg. The findings of this research suggest that IPM713 can interfere with the PI3K/AKT/mTOR signaling pathway and might be a potential therapeutic candidate for the treatment of colorectal cancer.


Assuntos
Fosfatidilinositol 3-Quinases
18.
J Proteome Res ; 20(9): 4346-4356, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34342461

RESUMO

Lung cancer (LC) is a widespread cancer that is the cause of the highest mortality rate accounting for 25% of all cancer deaths. To date, most LC patients are diagnosed at the advanced stage owing to the lack of obvious symptoms in the early stage and the limitations of current clinical diagnostic techniques. Therefore, developing a high throughput technique for early screening is of great importance. In this work, we established an effective and rapid salivary metabolic analysis platform for early LC diagnosis and combined metabolomics and transcriptomics to reveal the metabolic fluctuations correlated to LC. Saliva samples were collected from a total of 150 volunteers including 89 patients with early LC, 11 patients with advanced LC, and 50 healthy controls. The metabolic profiling of noninvasive samples was investigated on an ultralow noise TELDI-MS platform. In addition, data normalization methods were screened and assessed to overcome the MS signal variation caused by individual difference for biomarker mining. For untargeted metabolic profiling of saliva samples, around 264 peaks could be reliably detected in each sample. After multivariate analysis, 23 metabolites were sorted out and verified to be related to the dysfunction of the amino acid and nucleotide metabolism in early LC. Notably, transcriptomic data from online TCGA repository were utilized to support findings from the salivary metabolomics experiment, including the disorder of amino acid biosynthesis and amino acid metabolism. Based on the verified differential metabolites, early LC patients could be clearly distinguished from healthy controls with a sensitivity of 97.2% and a specificity of 92%. The ultralow noise TELDI-MS platform displayed satisfactory ability to explore salivary metabolite information and discover potential biomarkers that may help develop a noninvasive screening tool for early LC.


Assuntos
Neoplasias Pulmonares , Saliva , Humanos , Lasers , Neoplasias Pulmonares/diagnóstico , Espectrometria de Massas , Metabolômica
19.
J Proteome Res ; 20(8): 4022-4030, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34279957

RESUMO

More and more evidence has proved that urinary metabolites can instantly reflect disease state. Therefore, ultra-sensitive and reproducible detection of urinary metabolites in a high-throughput way is urgently desirable for clinical diagnosis. Matrix-free laser desorption/ionization mass spectrometry (LDI-MS) is a high-throughput platform for metabolites detection, but it is encountered by severe interference from numerous salts in urine samples, because the crystallized urine salt on dried samples could result in poor reproducibility in LDI-MS detection. The present work proposed a tip-contact extraction (TCE) technique to eliminate interference from the urine salt. Vertical silicon nanowire arrays decorated with the fluorinated ethylene propylene film (FEP@VSiNWs) could effectively extract metabolites from the urine sample dropping on its surface. High salt tolerance was observed in the subsequent LDI-MS detection of the metabolites extracted on the tip of FEP@VSiNWs even in the presence of 1 M urea. Stable and reproducible mass spectra for non-target metabolic analysis were obtained in real urine samples with different dilution folds. Urinary metabolites collected from bladder cancer (BC) patients were reliably profiled by the TCE method coupled with negative LDI-MS. Based on this platform, potential metabolic biomarkers that can distinguish BC patients and normal controls were uncovered.


Assuntos
Lasers , Silício , Humanos , Espectrometria de Massas , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Anal Chem ; 91(16): 10376-10380, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31356056

RESUMO

Precise diagnosis at the molecular level is essential for the improvement of surgery and treatment. High-throughput and spatial-resolved mass spectrometric (MS) methods for in situ detection of metabolites on tissue samples can reveal the dysregulation of metabolism in abnormal tissue and help identification of tumor. We here report a nondestructive MS method named as tip-contact sampling/ionization (TCSI)-MS technology which can quickly acquire lipidomic information from liver tissue and thereby realize tumor identification. Using this technology, fatty acids and lipids at the liver tissue surface can be rapidly imprinted onto a silicon nanowire tip attached with reduced graphene oxide (rGO) and sensitively detected by on-chip MS. With proper data pretreatment and statistical analysis, the clinical primary hepatocellular carcinoma (HCC) tissues can be discriminated from the nontumor parts. In addition, we found that a panel of adjacent dual peaks' ratio can be used to build a prediction model in artificial neural networks (ANN), resulting in high accuracy (91.7-98.3%) for tumor discrimination. Ratiometric TCSI-MS imaging using a selected dual peaks' ratio can greatly enhance the spatial resolution of tumor margin. The feature ratiometric data of lipid molecules may guide the study of metabolism pathways involved in hepatocarcinoma and ultimately become new metabolic biomarkers in clinical diagnosis. The present work demonstrated that the TCSI-MS technology may pave a novel way for surgery guidance and precision diagnosis in tissue biopsy.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma Hepatocelular/diagnóstico , Lipídeos/análise , Neoplasias Hepáticas/diagnóstico , Fígado/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Carcinoma Hepatocelular/química , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Grafite/química , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/química , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Nanofios/química , Redes Neurais de Computação , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA