RESUMO
Fluorogens with aggregation-induced emission (AIEgens) are promising agents for two-photon fluorescence (TPF) imaging. However, AIEgens' photophysical properties are fixed and unoptimizable once synthesized. Therefore, it is urgent and meaningful to explore an efficient post-regulation strategy to optimize AIEgens' photophysical properties. Herein, a general and efficient post-regulation strategy is reported. By simply tuning the ratio of inert AIEgens within binary nanoparticles (BNPs), the fluorescence quantum yield and two-photon absorption cross-section of functional AIEgens are enhanced by 8.7 and 5.4 times respectively, which are not achievable by conventional strategies, and the notorious phototoxicity is almost eliminated. The experimental results, theoretical simulation, and mechanism analysis demonstrated its feasibility and generality. The BNPs enabled deep cerebrovascular network imaging with ≈1.10 mm depth and metastatic cancer cell detection with single-cell resolution. Furthermore, the TPF imaging quality is improved by the self-supervised denoising algorithm. The proposed binary molecular post-regulation strategy opened a new avenue to efficiently boost the AIEgens' photophysical properties and consequently TPF imaging quality.
Assuntos
Corantes Fluorescentes , Corantes Fluorescentes/química , Animais , Camundongos , Nanopartículas/química , Fótons , Humanos , Imagem Óptica/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodosRESUMO
Ovarian clear cell carcinoma (OCCC) is a subtype of ovarian cancer and is highly malignant with high chemoresistance. CACNA1H is pivotal in tumor development. However, the role of CACNA1H in the acquisition process of chemotherapeutic resistance in OCCC cells is rarely reported. Therefore, this study aimed to explore the role of CACNA1H in chemotherapy resistance of OCCC cells and its related mechanism. Based on bioinformatics analysis, we found that CACNA1H was downregulated in chemoresistant OCCC patients compared to chemosensitive OCCC patients. Comparing DDP-resistant and sensitive OCCC cell lines, the resistant strain showed lower CACNA1H mRNA expression. CACNA1H expression was associated with calcium signaling pathways in chemoresistant OCCC patients. CACNA1H mRNA expression was significantly downregulated in OCCC cells compared to normal ovarian epithelial cells. When CACNA1H was overexpressed, intracellular Ca2+ concentration and protein levels of p-CaMKII and p-Akt were significantly upregulated, while protein levels of LC3-II/LC3-I and Beclin1 were downregulated, indicating a repression of autophagy. The rescue experiment revealed that CACNA1H overexpression in drug-resistant OCCC cells reduced autophagy-induced DDP resistance via CaMKII/Akt signaling. Overall, CACNA1H increased intracellular Ca2+ concentration and activated CaMKII/Akt signaling pathway in OCCC, thereby repressing autophagy to maintain the sensitivity of OCCC cells to DDP.
Assuntos
Adenocarcinoma de Células Claras , Autofagia , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas , Feminino , Humanos , Adenocarcinoma de Células Claras/genética , Adenocarcinoma de Células Claras/tratamento farmacológico , Adenocarcinoma de Células Claras/patologia , Adenocarcinoma de Células Claras/metabolismo , Autofagia/genética , Autofagia/efeitos dos fármacos , Cálcio/metabolismo , Sinalização do Cálcio/genética , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genéticaRESUMO
The aim of the present study was to elucidate the role and downstream mechanism of long noncoding RNA (lncRNA) metastasisassociated lung adenocarcinoma transcript 1 (MALAT1) in the process of cervical cancer cell pyroptosis. The effect of inhibiting lncRNA MALAT1 on cervical cancer cells was determined using primary cells isolated from patients and U14 cervical tumorbearing nude mice. The level of lncRNA MALAT1 expression and cell viability were determined for relationship analysis. Pyroptosis was then investigated in HeLa cells with lncRNA MALAT1 knockdown or overexpression with or without lipopolysaccharide (LPS) treatment. Bioinformatics tools were used to identify downstream factors of lncRNA MALAT1, which were subsequently verified by gain or lossoffunction analyses in the process of cervical cancer cell pyroptosis. It was observed that the level of lncRNA MALAT1 was markedly higher in cervical carcinoma cells compared with expression in paracarcinoma cells, and knockdown of lncRNA MALAT1 induced cervical cancer cell death through pyroptosis. By contrast, overexpression of lncRNA MALAT1 blocked LPSinduced pyroptosis. These results, combined with bioinformatics statistical tools, demonstrated that the microRNA (miR)124/sirtuin 1 (SIRT1) axis may affect the progression of cervical cancer at least partly by mediating the effect of lncRNA MALAT1 on the pyroptosis of cervical cancer cells. In conclusion, the lncRNA MALAT1/miR124/SIRT1 regulatory axis in cervical cancer cells may mediate pyroptosis and may provide potential targets against the progression of cervical cancer.
Assuntos
MicroRNAs , RNA Longo não Codificante , Sirtuínas , Neoplasias do Colo do Útero , Camundongos , Animais , Feminino , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Piroptose/genética , Neoplasias do Colo do Útero/genética , Sirtuína 1/genética , Células HeLa , Lipopolissacarídeos , Camundongos Nus , MicroRNAs/metabolismoRESUMO
Background: The incidence of endometrial carcinoma (EC) has been increasing annually, and treatment of advanced cases remains challenging. MicroRNA-424 (miR-424) was reported to affect several types of tumors, but its role in EC has not been studied. Methods: We generated transient knockdown models of miR-424 and PTEN in EC cells. We measured mRNA and protein expression using RT-PCR and western blotting. We evaluated cell proliferation, invasion, migration, and apoptosis using CCK8, Transwell, wound healing, and flow cytometry assays. We also investigated the effect of miR-424 and PTEN on tumor growth using a metastatic tumor model in nude mice. Results: The expression of miR-424 was significantly elevated in EC tissues and cell lines. MiR-424 inhibitor significantly restrained PTEN/PI3K/AKT signaling, while miR-424 mimic activated this pathway. Knockdown of PTEN significantly reversed the effects of miR-424 inhibitor on cell proliferation, invasion, migration, and apoptosis in EC cells. The significant inhibition of tumor growth and ki67 expression caused by miR-424 inhibitor were markedly promoted by sh-PTEN. Conclusions: Our findings suggest that miR-424 inhibitor could inhibit cell proliferation, invasion, migration, epithelial-mesenchymal transition (EMT) process, and tumor growth, while promoting apoptosis in EC. However, the effects of miR-424 inhibitor were markedly reversed by sh-PTEN. This study provides a potential novel therapeutic strategy for the prevention and treatment of EC by targeting miR-424.
RESUMO
Interactions between food components have a positive impact in the field of food science. In this study, the effects of tea polyphenol on the structural and physicochemical properties of Chinese yam starch using autoclave-assisted pullulanase treatment were investigated. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, rapid visco analysis, differential scanning calorimetry, and the 3,5-dinitrosalicylic acid method were applied in this study. The results showed that the Chinese yam starch-tea polyphenol complex formed a structural domain with higher thermal stability along with lower pasting viscosities than native starch. The in vitro digestibility of Chinese yam starch decreased with the addition of the tea polyphenol, and the amount of resistant starch content in the complex was 56.25 ± 1.37%, significantly higher than that of native starch (p < 0.05). In addition, the complex showed a B+V-type crystalline structure, which confirmed that the interaction modes between the starch and tea polyphenol include hydrogen bonding and hydrophobic interactions. Moreover, the appearance of an irregular sponge network structure of the complex further supported the interactions between the starch and tea polyphenol. This study provides a theoretical basis for the development of functional foods using Chinese yam starch.
RESUMO
BACKGROUND: Endometriosis is one of the most common gynecological diseases, and seriously reduces the quality of life of patients. However, the pathogenesis of this disease is unclear. Therefore, more studies are needed to elucidate its pathogenesis. Our previous publication found that the Sonic Hedgehog (SHH) signaling pathway was activated in endometriosis. This study tested whether SHH signaling in endometrial stromal cells (ESCs) was critical for the pathogenesis of endometriosis. METHODS: To examine the effect of inhibiting the SHH signaling pathway on endometriosis, we first isolated ESCs from eutopic endometrial tissues of patients with or without endometriosis and identified the extracted cells by morphological observation and immunofluorescence. Then, we treated ESCs with the GLI inhibitor GANT61 and used CCK-8, wound healing and invasion assays to detect cell activities, such as proliferation, invasion and metastasis. Furthermore, we detected the expression of key proteins and proliferation markers of the SHH signaling pathway in the lesions of nude mice using immunochemistry. RESULTS: We demonstrated that higher concentrations of GANT61 decreased the proliferation rate and migration distance of ESCs. We observed that GANT61 inhibited the invasion of ESCs. In addition, blockage of the SHH signaling pathway significantly reduced cell proliferation in vitro. CONCLUSIONS: Our study suggested that inhibition of the SHH pathway is involved in cell proliferation and invasive growth in the pathogenesis of endometriosis.
Assuntos
Endometriose , Animais , Endometriose/metabolismo , Endometriose/patologia , Feminino , Proteínas Hedgehog , Humanos , Camundongos , Camundongos Nus , Qualidade de Vida , Transdução de SinaisRESUMO
Endometriosis is a benign gynecological disease sharing several features with malignant tumor. Cytoplasmic polyadenylation element-binding protein 3 (CPEB3), a potential target of miR-21-5p, is downregulated in endometriotic specimens. However, the function of CPEB3 in endometriosis is elusive. In this study, in cultured primary human endometrial stromal cells (ESCs), the overexpression and inhibition of CPEB3 were achieved by transduction of adenovirus-mediated CPEB3 overexpressed plasmid and shRNA, respectively. Functional analysis uncovered that upregulated CPEB3 reduced cell viability and arrested cell cycle entry. The expression of cyclin D1 and c-Myc was decreased after CPEB3 overexpression. Overexpression of CPEB3 facilitated ESC apoptotic potential, accompanied by increased Bax, cleaved-caspase 3 and cleaved-caspase 9, and reduced Bcl2. Moreover, elevated CPEB3 weakened migration and invasion abilities of ESCs. CPEB3 overexpression also reduced the expression of fibronectin and vimentin and the activities of matrix metalloproteinase (MMP)-9 and MMP-2. Interestingly, these effects were counteracted by CPEB3 inhibition. Furthermore, CPEB3 controlled the protein level of CXCL12, a homeostatic chemokine. CXCL12 elevation partially reversed the effects of CPEB3 on inhibiting ESC proliferation, migration and invasion, and promoting apoptosis. Based on these findings, it seems possible that CPEB3, as a critical player, attenuated the progression of endometriosis through repressing CXCL12 expression.
Assuntos
Endometriose , MicroRNAs , Movimento Celular/genética , Proliferação de Células , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Endometriose/genética , Endometriose/patologia , Endométrio/metabolismo , Feminino , Humanos , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Células Estromais/metabolismo , Células Estromais/patologiaRESUMO
Photodynamic therapy (PDT), which utilizes light excite photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells or diseased tissue, has attracted a great deal of attention in the last decades due to its unique advantages. However, the advancement of PDT is restricted by the inherent characteristics of PS and tumor microenvironment (TME). It is urgent to explore high-performance PSs with TME regulation capability and subsequently improve the therapeutic outcomes. Herein, we reported a newly engineered PS of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting photodynamic anticancer therapy. Solvothermal treatment of hemin enabled the synthesized P-CHNPs to enhance oxidative stress in TME, which could be further amplified under light irradiation. Excellent in vitro and in vivo PDT effects were achieved due to the improved ROS (hydroxyl radicals and singlet oxygen) generation efficiency, hypoxia relief, and glutathione depletion. Moreover, the superior in vitro and in vivo biocompatibility and boosted PDT effect make the P-CHNPs a potential therapeutic agent for future translational research.
RESUMO
Emerging studies have clarified the critical role of LncRNA MALAT1 in various pathological progressions. Here, we identified its positive relationship with cervical carcinoma proliferation. Cervical carcinoma has been considered as one of the most malignant tumors among female. Thus, our study was designed to investigate the underlying mechanism of LncRNA MALAT1 on cervical tumor cell proliferation. We observed that miR-124 was the potential target of LncRNA MALAT1 in cervical tumor cell lines (Hela, C-33A, Caski, and SiHa), the expression level of which is negatively correlated with LncRNA MALAT1 in cervical tumor cells, tissues of cervical patients, and mice. Gain- or loss-of-function analyses in cervical tumor cells have further verified the regulatory role of MALAT1 on miR-124. Additionally, the proliferation of cervical carcinoma was inhibited by miR-124 overexpression, whereas it was blocked by LV-MALAT1 transfection. In vivo assays, overexpression of miR-124, or knockdown of MALAT1 exhibited beneficial effects on tumor weight, size, and volume, together with elevating the survival rate, tightly related with the progression of cervical cancer. In conclusion, LncRNA MALAT1 disabled the effects of miR-124 as an inhibitory sponge, accelerating the progression of cervical carcinoma.
RESUMO
BACKGROUND: Ovarian cancer has one of the highest mortality rates among all gynaecological malignancies, and increasing evidence suggests that lncRNAs are widely involved in the development of ovarian tumours. This study aimed to investigate the mechanism of the LNC00115/miR-7/ERK axis in the cisplatin resistance of ovarian cancer cells. METHODS: The expression of miR-7 and LNC00115 in ovarian cancer cell lines and tissues was detected by qRT-PCR. The ovarian cancer cell lines were constructed by overexpressing or knocking down the expression of LNC00115 or miR-7. CCK-8, transwell invasion, Western blot, immunohistochemistry, and luciferase reporter assays were carried out to identify the targets of LNC00115 and explore its roles and mechanisms in ovarian cancer. A nude mouse model was established, and the expression of LNC00115, miR-7 and ERK was detected. The changes in the tumours and body weights of the nude mice were measured. RESULTS: LNC00115 was upregulated in ovarian cancer tissues and cisplatin-resistant ovarian cancer cells. Moreover, LNC00115 promoted the cisplatin resistance, invasion and migration of ovarian cancer cells. LNC00115 was shown to directly target miR-7, and miR-7 was downregulated in ovarian cancer tissues and cisplatin-resistant ovarian cancer cells. miR-7 inhibited the cisplatin resistance, invasion and migration of ovarian cancer cells and directly targeted ERK. ERK was overexpressed in cisplatin-resistant ovarian cancer cells and ovarian cancer tissues. In animal experiments, overexpression of LNC00115 enhanced the cisplatin resistance of ovarian cancer cells, while miR-7 had the opposite effect. Mechanistically, LNC00115 sponged miR-7 to increase the expression of ERK, which in turn enhanced the cisplatin resistance of ovarian cancer. CONCLUSION: Our data clarify the mechanism by which the LNC00115/miR-7/ERK axis promotes cisplatin resistance and provide a new clinical strategy for combating cisplatin resistance in ovarian cancer.
RESUMO
Cisplatin (CDDP) chemoresistance seriously affects the prognosis and survival of patients with ovarian cancer (OC). Previous research has shown that circular RNA CDR1as is biologically associated with a large number of cancers. However, the molecular mechanism underlying the role of CDR1as in CDDP chemoresistance in OC remains unclear. Here, we investigated the mechanism of CDR1as in CDDP-resistant OC. First, we employed bioinformatics analysis and quantitative real-time PCR (qRT-PCR) to determine the expression of CDR1as and related RNAs in CDDP-sensitive and -resistant OC tissues and cells. Then, functional experiments were used to determine cell proliferation, invasion, migration, and apoptosis in CDDP chemoresistance and parent OC cells in vitro. The effect of CDR1as in CDDP chemoresistance OC progression was tested in nude mice in vivo. Moreover, dual-luciferase assays and RNA immunoprecipitation (RIP) were performed to confirm the interactions of CDR1as and related RNAs. Finally, we used Western blotting to determine protein expression levels. Our findings interpret the underlying mechanisms of the CDR1as/miR-1299/PPP1R12B axis and shed light on the clinical applications for CDDP-chemoresistant OC.
RESUMO
OBJECTIVE: The aim of this study was to investigate the association between hormone therapy (HT) use and the development of bone fractures. METHODS: Using terms related to HT and fractures, we searched PubMed, Embase, and the Cochrane library for randomized controlled trials on HT and the associated risk of fractures published before August 2014. Two evaluators independently selected studies on the basis of predetermined selection criteria, and 28 studies were included in the meta-analysis. Summary estimates were obtained using fixed- or random-effects models as appropriate. RESULTS: A total of 28 studies included 33,426 participants and 2,516 fractures cases. The overall relative risk of HT was 0.74 (95% confidence interval [CI] 0.69-0.80) for total fractures, 0.72 (95% CI 0.53-0.98) for hip fractures, and 0.63 (95% CI 0.44-0.91) for vertebral fractures. In subgroup analyses, women of an age less than 60 years had lower risk of total fractures compared with women of an age more than 60 years (P = 0.003). Estradiol led to greater decrease in the risk of total fractures compared with conjugated equine estrogens (P =â .01). There is greater reduction in total fracture risk in trials of follow-up less than 36 months than that of follow-up more than 36 months (P = 0.003). No increase in the incidence of total cancer events but an increase in the incidence of thrombus was found to be associated with HT. CONCLUSIONS: HT is associated with a reduced risk of total, hip, and vertebral fractures, with a possible attenuation of this protection effect after it is stopped or when it is begun after 60 years. However, there may be an increase in the incidence of thrombus formation associated with HT.