Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1420602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39268468

RESUMO

Background: Kawasaki disease (KD) is a self-limiting and acute systemic vasculitis of unknown etiology, mainly affecting children. Ferulic acid (FA), a natural phenolic substance, has multiple pharmacological properties, including anti-inflammatory, anti-apoptosis, and anti-fibrosis, and so on. So far, the protective effects of FA on KD have not been explored. Methods: In this study, we established Candida albicans water soluble fraction (CAWS)-induced mouse coronary artery vasculitis of KD model and the tumor necrosis factor α (TNF-α)-induced human umbilical vein endothelial cells (HUVECs) injury model to investigate the anti-inflammatory and anti-apoptosis effects of FA on KD, and try to elucidate the underlying mechanism. Results: Our in vivo results demonstrated that FA exerted anti-inflammatory effects on KD by inhibiting the infiltration of CD45-positive leukocytes and fibrosis around the coronary artery. Additionally, FA downregulated the levels of inflammatory and chemotactic cytokines, alleviated splenomegaly, and exhibited anti-apoptotic effects on KD by reducing TUNEL-positive cells, downregulating BAX expression, and upregulating BCL-2 expression. In addition, Our in vitro findings showed that FA could effectively inhibit TNF-α-induced HUVEC inflammation like NF-κB inhibitor QNZ by downregulating the expression of pro-inflammatory cytokines as well as attenuated TNF-α-induced HUVEC apoptosis by reducing apoptotic cell numbers and the BAX/BCL-2 ratio, which could be reversed by the AMPK inhibitor compound c (CC). The further mechanistic study demonstrated that FA could restrain vascular endothelial cell inflammation and apoptosis in KD through activating the AMPK/mTOR/NF-κB pathway. However, FA alone is hard to completely restore KD into normal condition. Conclusion: In conclusion, FA has potential protective effects on KD, suggesting its promising role as an adjuvant for KD therapy in the future.

2.
Int Immunopharmacol ; 129: 111593, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38290206

RESUMO

Acute pancreatitis (AP) is a prevalent, destructive, non-infectious pancreatic inflammatory disease, which is usually accompanied with systemic manifestations and poor prognosis. Gastrodin (4-hydroxybenzyl alcohol 4-O-ß-d-glucopyranoside) has ideal anti-inflammatory effects in various inflammatory diseases. However, its potential effects on AP had not been studied. In this study, serum biochemistry, H&E staining, immunohistochemistry, immunofluorescence, western blot, real-time quantitative PCR (RT-qPCR) were performed to investigate the effects of Gastrodin on caerulein-induced AP pancreatic acinar injury model in vivo and lipopolysaccharide (LPS) induced M1 phenotype macrophage model in vitro. Our results showed that Gastrodin treatment could significantly reduce the levels of serum amylase and serum lipase while improving pancreatic pathological morphology. Additionally, it decreased secretion of inflammatory cytokines and chemokines, and inhibited the levels of p-p38/p38, p-IκB/IκB as well as p-NF-κB p-p65/NF-κB p65. Overall our findings suggested that Gastrodin might be a promising therapeutic option for patients with AP by attenuating inflammation through inhibition of the p38/NF-κB pathway mediated macrophage cascade.


Assuntos
Álcoois Benzílicos , Glucosídeos , NF-kappa B , Pancreatite , Humanos , NF-kappa B/metabolismo , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Doença Aguda , Inflamação , Macrófagos/metabolismo
3.
Chem Biol Interact ; 382: 110559, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37247809

RESUMO

BACKGROUND: Nephrotic syndrome (NS) is a chronic kidney disease mainly caused by impaired podocytes, ultimately resulting in massive proteinuria or even end-stage renal disease (ESRD). METHODS: The objective of this study was to explore the potential pathogenesis of NS caused by podocyte injury, and further explore the underlying mechanism through data mining, bioinformatics analysis, and experimental verification. The integrated analyses including Seurat, CellChat, gene ontology (GO), and molecular docking were performed based on the single-cell RNA-seq data (scRNA-seq). The adriamycin (ADR)-induced podocyte injury model in vitro was established to conduct the experimental verification for bioinformatics analysis results through western blot and real-time quantitative PCR (RT-qPCR). RESULTS: The results of bioinformatics analysis revealed that the bone morphogenetic protein (BMP) signaling pathway was involved in the podocyte-to-podocyte communication, which plays a crucial role in podocyte injury. The expression of BMP7 was significantly increased in ADR-induced podocytes through activating the Adenosine-monophosphate activated-protein kinase/Mammalian target of rapamycin (AMPK/mTOR) mediated autophagy pathway, and these findings were confirmed by in vitro experiments. CONCLUSION: This study first demonstrated that BMP7 participated in ADR-induced podocyte injury. The BMP7/AMPK/mTOR mediated autophagy pathway may play a crucial role in podocyte injury, which may be the potential therapeutic target for NS patients.


Assuntos
Podócitos , Animais , Humanos , Podócitos/metabolismo , Podócitos/patologia , Sirolimo/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Simulação de Acoplamento Molecular , Análise da Expressão Gênica de Célula Única , Serina-Treonina Quinases TOR/metabolismo , Doxorrubicina/toxicidade , Doxorrubicina/metabolismo , Mamíferos/metabolismo , Autofagia , Apoptose , Proteína Morfogenética Óssea 7/metabolismo
4.
Carbohydr Polym ; 297: 120037, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184146

RESUMO

In this study, lemongrass essential oil (LEO) was wrapped in ß-cyclodextrin (ß-CD) using a co-precipitation method to prepare an inclusion complex (LEO/ß-CD). A biological multifunctional preservation card was prepared by 3D printing and mixing the inclusion complex with sodium alginate (SA). The moisture generated by strawberry respiration melted the popping candy (PPC) and stimulated the release of CO2, a synergistic antibacterial compound formed with LEO. Hence, antibacterial activity and air regulation were achieved, and the fruit remained fresh. The results indicated that LEO was successfully encapsulated in ß-CD, and that LEO/ß-CD had a strong bacteriostatic effect on Aspergillus niger and Botrytis cinerea, with a high resistance to oxidation. The PPC could release CO2 and extend the shelf life of strawberries by reducing their respiration and inhibiting mold.


Assuntos
Fragaria , Óleos Voláteis , beta-Ciclodextrinas , Alginatos/farmacologia , Antibacterianos , Atmosfera , Doces , Dióxido de Carbono , Óleos Voláteis/farmacologia , Impressão Tridimensional
5.
Food Chem ; 370: 131082, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34537435

RESUMO

In this study, chitosan (CH), mulberry anthocyanin (MA), and lemongrass essential oils (LEO) were used as an interlayer using a 3D printer. Further, cassava starch (CS) was used as a protective layer to form indicator films. The indicator films containing LEO showed significant antioxidant and antibacterial properties, and the release rate of LEO increased with a rise in pH. When chilled pork spoiled, the color of the indicator films changed from red to gray-blue, and the RGB values could be automatically analyzed by a smartphone application to determine pork freshness. These films hold implications as easy-to-use indicators of meat freshness, with great potential for monitoring food spoilage, as part of an intelligent packaging system.


Assuntos
Quitosana , Cymbopogon , Óleos Voláteis , Carne de Porco , Carne Vermelha , Animais , Antocianinas , Embalagem de Alimentos , Concentração de Íons de Hidrogênio , Impressão Tridimensional , Carne Vermelha/análise , Suínos
6.
Scand J Immunol ; 94(4): e13094, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34780092

RESUMO

The thymus produces self-limiting and self-tolerant T cells through the interaction between thymocytes and thymus epithelial cells (TECs), thereby generating central immune tolerance. The TECs are composed of cortical and medullary thymic epithelial cells, which regulate the positive and negative selection of T cells, respectively. During the process of negative selection, thymocytes with self-reactive ability are deleted or differentiated into regulatory T cells (Tregs). Tregs are a subset of suppressor T cells that are important for maintaining immune homeostasis. The differentiation and development of Tregs depend on the development of TECs and other underlying molecular mechanisms. Tregs regulated by thymic epithelial cells are closely related to human health and are significant in autoimmune diseases, thymoma and pregnancy. In this review, we summarize the current molecular and transcriptional regulatory mechanisms by which TECs affect the development and function of thymic Tregs. We also review the pathophysiological models of thymic epithelial cells regulating thymic Tregs in human diseases and specific physiological conditions.


Assuntos
Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Imunidade Adaptativa , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Diferenciação Celular/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Epiteliais/classificação , Células Epiteliais/citologia , Células Epiteliais/imunologia , Feminino , Homeostase , Humanos , Masculino , Modelos Imunológicos , Poliendocrinopatias Autoimunes/genética , Poliendocrinopatias Autoimunes/imunologia , Gravidez , Transdução de Sinais/imunologia , Linfócitos T Reguladores/classificação , Timócitos/classificação , Timócitos/citologia , Timócitos/imunologia , Timoma/imunologia , Timo/citologia , Timo/imunologia , Neoplasias do Timo/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA