Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 179: 313-324, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490483

RESUMO

Nanoscale coordination polymer (NCP) is a class of hybrid materials formed by self-assembly of metal ions and organic ligands through coordination. The applications of NCP in biomedicine are quite extensive due to the diversity choice of metal ions and organic ligands. Here we designed Zr-P1 NCP based on Zr4+ selected as metal ion nodes and tetrakis(4-carboxyphenyl) ethylene as bridging ligands. Zr-P1 NCP was modified with functionalized pyrene derived polyethylene glycol (Py-PAA-PEG-Mal) on the surface and further conjugated with cRGD for active targeting of integrin αvß3 overexpressed in triple-negative breast cancer. Doxorubicin was loaded on Zr-P1 NCP with encapsulation efficiency up to 22 % for the treatment of triple negative breast cancer. 89Zr-P1 NCP can be used for in vivo tumor imaging due to the fluorescence properties resulting from the enhanced aggregation-induced Emission (AIE) behavior of P1 ligands and its positron emission tomography (PET) capability. Cellular evaluation indicated that the functionalized Zr-P1@PEG-RGD presented a good function for tumor cell targeting imaging and doxorubicin could be targeted to triple negative breast cancer when it was loaded onto Zr-P1@PEG-RGD, which corroborated with the in vivo results. In summary, 89Zr-P1@PEG-RGD can serve as a biocompatible nanoplatform for fluorescence and PET image-guided cargo delivery. STATEMENT OF SIGNIFICANCE: Nanoscale coordination polymer (NCP) is a class of hybrid materials formed by self-assembly of metal ions and organic ligands through coordination. The diversity of available metals and ligand structures upon NCP synthesis plays an advantage in establishing multimodal imaging platforms. Here we designed 89Zr-P1@PEG-RGD NCP based on Zr4+ selected as metal ion nodes and tetrakis(4-carboxyphenyl) ethylene as bridging ligands. 89Zr-P1@PEG-RGD nanomaterials have positron emission tomography (PET) capability due to the incorporation of zirconium-89, which can be used for in vivo tumor imaging with high sensitivity. The chemotherapeutic drug DOX was loaded on Zr-P1 NCP for the treatment of triple-negative breast cancer, and dual modality imaging can provide visual guidance for drug delivery.


Assuntos
Doxorrubicina , Tomografia por Emissão de Pósitrons , Radioisótopos , Neoplasias de Mama Triplo Negativas , Zircônio , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Zircônio/química , Animais , Tomografia por Emissão de Pósitrons/métodos , Humanos , Linhagem Celular Tumoral , Feminino , Doxorrubicina/farmacologia , Doxorrubicina/química , Polímeros/química , Camundongos , Sistemas de Liberação de Medicamentos , Polietilenoglicóis/química , Camundongos Nus
2.
Chin Med J (Engl) ; 117(8): 1217-22, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15361298

RESUMO

BACKGROUND: The synthesis of virus-like particles (VLPs) provides an important tool to determine the structural requirements for viral particle assembly and virus-host interactions. Our purpose was to express simultaneously all three structural proteins of hepatitis C virus (HCV) in insect cells to investigate the proteins assembly into VLPs and the immunogenicity of these particles. METHODS: HCV gene sequences encoding the structural proteins C, E1, and E2 were amplified with PCR, and recombinant baculoviruses were constructed using recombinant DNA techniques. The expression of HCV structural proteins in insect cells was analyzed by immunofluorescence and SDS-PAGE. The interaction of expressed structural proteins was investigated by immunoprecipitation and immunoblotting. The VLPs in the insect cells were visualized by electron microscopy (EM). VLPs were then purified by sucrose gradient centrifugation and used to immunize BALB/c mice. Antibodies against HCV were tested for in mouse serum samples by an ELISA assay. RESULTS: The recombinant baculoviruses reBV/C and reBV/E1-E2 were constructed successfully. Insect cells co-infected with reBV/C and reBV/E1-E2 expressed HCV C, E1, and E2 proteins with the expected molecular weights of 20kD, 35kD, and 66kD, respectively. The results of immunoprecipitation and immunoblotting assays revealed the coimmunoprecipitation of C, E1, and E2 proteins, indicating association of the three structural proteins. Electron microscopy of insect cells co-infected with reBV/C and reBV/E1-E2 demonstrated spherical particles (40 to 60 nm in diameter) similar to the HCV virions from serum samples or hepatic tissue samples of HCV infected humans. The VLPs were partially purified. Antibodies to HCV were detectable in the serum of mice immunized with VLPs. CONCLUSION: HCV structural proteins simultaneously expressed in insect cells can interact with each other and assemble into HCV-like particles, which are shown to be immunogenic in mice.


Assuntos
Hepacivirus/fisiologia , Proteínas Estruturais Virais/fisiologia , Vírion/fisiologia , Montagem de Vírus , Animais , Imunofluorescência , Hepacivirus/imunologia , Imunização , Imunoprecipitação , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica , Spodoptera , Proteínas Estruturais Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA