Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(10): 114765, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39306845

RESUMO

Nucleotide-binding leucine-rich repeat (NLR) proteins contribute widely to plant immunity by regulating defense mechanisms through the elicitation of a hypersensitive response (HR). Here, we find that TaRACK1B (the receptor for activated C-kinase 1B) regulates wheat immune response against Chinese wheat mosaic virus (CWMV) infection. TaRACK1B recruits TaSGT1 and TaHSP90 to form the TaRACK1B-TaSGT1-TaHSP90 complex. This complex is essential for maintaining NLR proteins' stability (TaRGA5-like and TaRGH1A-like) in order to control HR activation and inhibit viral infection. However, the cysteine-rich protein encoded by CWMV can disrupt TaRACK1B-TaSGT1-TaHSP90 complex formation, leading to the reduction of NLR-protein stability and suppression of HR activation, thus promoting CWMV infection. Interestingly, the 7K protein of wheat yellow mosaic virus also interferes with this antiviral immunity. Our findings show a shared viral counter-defense strategy whereby two soil-borne viruses may disrupt the TaRACK1B-TaSGT1-TaHSP90 complex, suppressing NLR-protein-mediated broad-spectrum antiviral immunity and promoting viral infection in wheat.

2.
Mar Life Sci Technol ; 6(3): 502-514, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39219681

RESUMO

As one of the common malignancies that threaten human life, bladder cancer occurs frequently with a high mortality rate in the world, due to its invasion, recurrence and drug resistance. Natural products from marine microorganisms are becoming the hotspots in discovery of new candidate drug entities, especially in the area of cancer. Brefeldin A (BFA) is a natural Arf-GEFs inhibitor, but due to the low aqueous solubility, strong toxicity, and poor bioavailability, it is urgent to conduct structural optimization research. Herein, a new BFA pyridine acrylate derivative CHNQD-01281 with improved solubility was prepared and found to exert moderate to strong antiproliferative activity on a variety of human cancer cell lines. It was noteworthy that CHNQD-01281 was most sensitive to two bladder cancer cell lines T24 and J82 (IC50 = 0.079 and 0.081 µmol/L) with high selectivity index (SI = 14.68 and 14.32), suggesting a superior safety to BFA. In vivo studies revealed that CHNQD-01281 remarkably suppressed tumor growth in a T24 nude mice xenograft model (TGI = 52.63%) and prolonged the survival time (ILS = 68.16%) in an MB49 allogeneic mouse model via inducing infiltration of cytotoxic T cells. Further mechanism exploration indicated that CHNQD-01281 regulated both EGFR/PI3K/AKT and EGFR/ERK pathways and mediated the chemotactic effect of chemokines on immune effector cells. Overall, CHNQD-01281 may serve as a potential therapeutic agent for bladder cancer through multiple mechanisms. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00246-w.

3.
Virology ; 595: 110071, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593594

RESUMO

WRKY transcription factors are widely involved in plant responses to biotic and abiotic stresses. However, there is currently a limited understanding of the regulation of viral infection by WRKY transcription factors in wheat (Triticum aestivum). The WRKY transcription factor TaWRKY50 in group IIb wheat exhibited a significant response to Chinese wheat mosaic virus infection. TaWRKY50 is localized in the nucleus and is an activating transcription factor. Interestingly, we found that silencing TaWRKY50 induces cell death following inoculation with CWMV. The protein kinase TaSAPK7 is specific to plants, whereas NbSRK is a closely related kinase with high homology to TaSAPK7. The transcriptional activities of both TaSAPK7 and NbSRK can be enhanced by TaWRKY50 binding to their promoters. CRP is an RNA silencing suppressor. Furthermore, TaWRKY50 may regulate CWMV infection by regulating the expression of TaSAPK7 and NbSRK to increase CRP phosphorylation and reduce the amount of programmed cell death (PCD).


Assuntos
Apoptose , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas , Fatores de Transcrição , Triticum , Triticum/virologia , Triticum/genética , Triticum/metabolismo , Doenças das Plantas/virologia , Fosforilação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Interações Hospedeiro-Patógeno
4.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474046

RESUMO

Post-translational modification of proteins plays a critical role in plant-pathogen interactions. Here, we demonstrate in Nicotiana benthamiana that knockout of NbHAG1 promotes Chinese wheat mosaic virus (CWMV) infection, whereas NbHAG1 overexpression inhibits infection. Transcriptome sequencing indicated that a series of disease resistance-related genes were up-regulated after overexpression of NbHAG1. In addition, cleavage under targets and tagmentation (Cut&Tag)-qPCR results demonstrated that NbHAG1 may activate the transcription of its downstream disease-resistance genes by facilitating the acetylation level of H3K36ac. Therefore, we suggest that NbHAG1 is an important positive regulator of resistance to CWMV infestation.


Assuntos
Resistência à Doença , Vírus de Plantas , Humanos , Vírus de Plantas/genética , Processamento de Proteína Pós-Traducional , Doenças das Plantas , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas
5.
Research (Wash D C) ; 7: 0315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357697

RESUMO

The ALPK1 (alpha-kinase 1)-TIFA (TRAF-interacting protein with fork head-associated domain)-TRAF6 signaling pathway plays a pivotal role in regulating inflammatory processes, with TIFA and TRAF6 serving as key molecules in this cascade. Despite its significance, the functional mechanism of TIFA-TRAF6 remains incompletely understood. In this study, we unveil that TIFA undergoes liquid-liquid phase separation (LLPS) induced by ALPK1 in response to adenosine diphosphate (ADP)-ß-D-manno-heptose (ADP-Hep) recognition. The phase separation of TIFA is primarily driven by ALPK1, the pT9-FHA domain, and the intrinsically disordered region segment. Simultaneously, TRAF6 exhibits phase separation during ADP-Hep-induced inflammation, a phenomenon observed consistently across various inflammatory signal pathways. Moreover, TRAF6 is recruited within the TIFA condensates, facilitating lysine (K) 63-linked polyubiquitin chain synthesis. The subsequent recruitment, enrichment, and activation of downstream effectors within these condensates contribute to robust inflammatory signal transduction. Utilizing a novel chemical probe (compound 22), our analysis demonstrates that the activation of the ALPK1-TIFA-TRAF6 signaling pathway in response to small molecules necessitates the phase separation of TIFA. In summary, our findings reveal TIFA as a sensor for upstream signals, initiating the LLPS of itself and downstream proteins. This process results in the formation of membraneless condensates within the ALPK1-TIFA-TRAF6 pathway, suggesting potential applications in therapeutic biotechnology development.

7.
Nat Commun ; 14(1): 7773, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012219

RESUMO

Wheat yellow mosaic virus (WYMV), a soil-borne pathogen, poses a serious threat to global wheat production. Here, we identify a WYMV resistance gene, TaRD21A, that belongs to the papain-like cysteine protease family. Through genetic manipulation of TaRD21A expression, we establish its positive role in the regulation of wheat to WYMV resistance. Furthermore, our investigation shows that the TaRD21A-mediated plant antiviral response relies on the release of a small peptide catalyzed by TaRD21A protease activity. To counteract wheat resistance, WYMV-encoded nuclear inclusion protease-a (NIa) suppress TaRD21A activity to promote virus infection. In resistant cultivars, a natural variant of TaRD21A features a glycine-to-threonine substitution and this substitution enables the phosphorylation of threonine, thereby weakening the interaction between NIa and TaRD21A, reinforcing wheat resistance against WYMV. Our study not only unveils a WYMV resistance gene but also offers insights into the intricate mechanisms underpinning resistance against WYMV.


Assuntos
Vírus do Mosaico , Potyviridae , Triticum/genética , Papaína , Sinais Direcionadores de Proteínas , Potyviridae/genética , Vírus do Mosaico/genética , Treonina , Doenças das Plantas/genética
8.
J Med Chem ; 65(18): 11970-11984, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36089748

RESUMO

Brefeldin A (BFA), a well-known natural Arf-GEFs inhibitor, is effective against hepatocellular carcinoma (HCC), while the poor solubility, serious toxicity, and short half-life limit its potential. Herein, distinct corresponding prodrugs of BFA, including esters 1-15, carbonates 16-24 and 30-32, and carbamates 25-29, were synthesized and evaluated. CHNQD-01255 (16) with improved aqueous solubility (15-20 mg/mL) demonstrated favorable pharmacokinetic profiles. It behaved as expected by undergoing rapid conversion to BFA in vivo, and achieved sufficient high plasma exposure, prolonged half-life, as well as the improved bioavailability of BFA (F = 18.96%). Meanwhile, CHNQD-01255 significantly suppressed tumor growth (TGI = 61.0%) at a dose of 45 mg/kg (p.o.) in the xenograft model. Notably, the improved safety profile of CHNQD-01255 (MTD > 750 mg/kg, p.o.) was confirmed to be superior to that of BFA (MTD < 506 mg/kg). Overall, CHNQD-01255 may serve as a safe and effective new anti-HCC prodrug.


Assuntos
Carcinoma , Pró-Fármacos , Animais , Brefeldina A/farmacologia , Carbamatos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos , Pró-Fármacos/síntese química , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico
9.
Eur J Med Chem ; 240: 114598, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35849940

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and ranks third in mortality rate worldwide. Brefeldin A (BFA, 1), a natural Arf1 inhibitor, qualifies extremely superior antitumor activity against HCC while its low aqueous solubility, poor bioavailability, and high toxicity have greatly hindered its translation to the clinic. Herein, a series of BFA-cinnamic acid ester derivatives was rationally designed and synthesized via introducing active cinnamic acid and its analogues into the structure of 1. Their in vitro cytotoxic activities on five cancer cell lines, including HepG2, BEL-7402, HeLa, Eca-109 and PANC-1, were evaluated using MTT assay. As expected, favorable cytotoxic activity was observed on majority of the mono-substituted derivatives. Especially, the most potent brefeldin A 4-O-(4)-dimethylaminocinnamate (CHNQD-01269, 33) with improved aqueous solubility, demonstrated the strong cytotoxic activity against HepG2 and BEL-7402 cell lines with IC50 values of 0.29 and 0.84 µM, respectively. More importantly, 33 performed low toxicity on normal liver cell line L-02 with the selectivity index (SI) of 9.69, which was more than 17-fold higher than that of 1. Results from mechanistic studies represented that 33 blocked the cell cycle in the G1 phase, and induced apoptosis via elevating reactive oxygen species (ROS) production and increasing expression of apoptosis-related proteins of HepG2 cells. Docking experiment also suggested 33 a promising Arf1 inhibitor, which was confirmed by the cellular thermal shift assay that 33 displayed a significant effect on the stability of Arf1 protein. Furthermore, 33 possessed high safety profile (MTD >100 mg/kg, ip) and favorable pharmacokinetic properties. Notably, the superior antiproliferative activity was verified in HepG2 tumor-bearing xenograft model in which 33 markedly suppressed the tumor growth (TGI = 46.17%) in nude mice at a dose of 10 mg/kg once a day for 16 d. The present study provided evidence of exploiting this series of highly efficacious derivatives, especially 33, for the treatment of HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Antineoplásicos/química , Apoptose , Brefeldina A/química , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Cinamatos , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres/farmacologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Camundongos Nus , Relação Estrutura-Atividade
10.
J Mol Neurosci ; 72(6): 1293-1299, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35536477

RESUMO

Coffin-Siris syndrome (CSS) is a neurodevelopmental disorder characterized by cognitive disability, coarse facial features, hypertrichosis, and somatic dysmorphic features. It is caused by mutations in the BAF-complex or SOX gene. Here, a Chinese woman presenting with neurodevelopmental delay, mild intellectual disability, speech delay, dysmorphic features, obesity, scoliosis, hypotonia, seizures, skin problems, hypokalemia, and endocrine dysfunction is described. Whole exome sequencing (WES) identified a heterozygous missense variant, c.2074G > C (p. Ala692Pro), in the SMARCC2 gene of the proband. Affecting chromatin structure, SMARCC2 plays an essential role in modulating cortical neurogenesis, and controlling cortical size and thickness. Moreover, it is associated with tumor suppression, and SMARCC2 mutations have been observed with high frequency in human cancers. While this is the second report of SMARCC2 mutations in patients with detailed phenotypes, this is the first describing the observation of electrolyte disturbances and endocrinopathy. These findings expanded the genetic and clinical spectrum of SMARCC2-related Coffin-Siris syndrome.


Assuntos
Deformidades Congênitas da Mão , Deficiência Intelectual , Micrognatismo , Anormalidades Múltiplas , China , Proteínas de Ligação a DNA/genética , Face/anormalidades , Deformidades Congênitas da Mão/genética , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Micrognatismo/genética , Pescoço/anormalidades , Fatores de Transcrição
11.
Pharmacol Res ; 172: 105800, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34363949

RESUMO

Hepatocellular carcinoma (HCC) is one of the major cancers with high mortality rate. Traditional drugs used in clinic are usually limited by the drug resistance and side effect and novel agents are still needed. Macrolide brefeldin A (BFA) is a well-known lead compound in cancer chemotherapy, however, with poor solubility and instability. In this study, to overcome these disadvantages, BFA was encapsulated in mixed nanomicelles based on TPGS and F127 copolymers (M-BFA). M-BFA was conferred high solubility, colloidal stability, and capability of sustained release of intact BFA. In vitro, M-BFA markedly inhibited the proliferation, induced G0/G1 phase arrest, and caspase-dependent apoptosis in human liver carcinoma HepG2 cells. Moreover, M-BFA also induced autophagic cell death via Akt/mTOR and ERK pathways. In HepG2 tumor-bearing xenograft mice, indocyanine green (ICG) as a fluorescent probe loaded in M-BFA distributed to the tumor tissue rapidly, prolonged the blood circulation, and improved the tumor accumulation capacity. More importantly, M-BFA (10 mg/kg) dramatically delayed the tumor progression and induced extensive necrosis of the tumor tissues. Taken together, the present work suggests that M-BFA has promising potential in HCC therapy.


Assuntos
Antineoplásicos/administração & dosagem , Brefeldina A/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Micelas , Nanoestruturas/administração & dosagem , Animais , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Brefeldina A/sangue , Brefeldina A/química , Brefeldina A/farmacocinética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos BALB C , Nanoestruturas/química , Polietilenos/administração & dosagem , Polietilenos/química , Polipropilenos/administração & dosagem , Polipropilenos/química , Ratos Sprague-Dawley , Distribuição Tecidual , Vitamina E/administração & dosagem , Vitamina E/química
12.
Mar Drugs ; 20(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35049881

RESUMO

Brefeldin A (1), a potent cytotoxic natural macrolactone, was produced by the marine fungus Penicillium sp. (HS-N-29) from the medicinal mangrove Acanthus ilicifolius. Series of its ester derivatives 2-16 were designed and semi-synthesized, and their structures were characterized by spectroscopic methods. Their cytotoxic activities were evaluated against human chronic myelogenous leukemia K562 cell line in vitro, and the preliminary structure-activity relationships revealed that the hydroxy group played an important role. Moreover, the monoester derivatives exhibited stronger cytotoxic activity than the diester derivatives. Among them, brefeldin A 7-O-2-chloro-4,5-difluorobenzoate (7) exhibited the strongest inhibitory effect on the proliferation of K562 cells with an IC50 value of 0.84 µM. Further evaluations indicated that 7 induced cell cycle arrest, stimulated cell apoptosis, inhibited phosphorylation of BCR-ABL, and thereby inactivated its downstream AKT signaling pathway. The expression of downstream signaling molecules in the AKT pathway, including mTOR and p70S6K, was also attenuated after 7-treatment in a dose-dependent manner. Furthermore, molecular modeling of 7 docked into 1 binding site of an ARF1-GDP-GEF complex represented well-tolerance. Taken together, 7 had the potential to be served as an effective antileukemia agent or lead compound for further exploration.


Assuntos
Antineoplásicos/farmacologia , Brefeldina A/farmacologia , Penicillium , Áreas Alagadas , Animais , Antineoplásicos/química , Organismos Aquáticos , Brefeldina A/química , Proliferação de Células/efeitos dos fármacos , Humanos , Células K562/efeitos dos fármacos , Relação Estrutura-Atividade
13.
ACS Omega ; 5(44): 28889-28896, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33195942

RESUMO

As a compound from marine fungi, (+)-terrein showed significant anticancer activity. In this study, (+)-terrein was extracted from the marine-derived fungus and showed significant cytotoxicity against cancer cells, especially in A549 cells. To enhance its anticancer effects, redox-responsive nanocarriers based on folic acid-chitosan decorating the mesoporous silica nanoparticles were designed to control (+)-terrein target delivery into cancer cells. (+)-Terrein was loaded in the holes, and folic acid-chitosan worked as a gatekeeper by disulfide linkage controlling (+)-terrein release in the tumor microenvironment. The (+)-terrein drug delivery systems exhibited cytotoxicity toward A549 cells through induction of apoptosis. The apoptosis effect was confirmed by the increase in the expression of cleaved caspase-3, caspase-9, and PARP. Taken together, this work evaluates for the first time the (+)-terrein delivery system and provides a promising nanomedicine platform for (+)-terrein.

14.
Front Plant Sci ; 11: 603518, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552099

RESUMO

WRKY transcription factors play important roles in plants, including responses to stress; however, our understanding of the function of WRKY genes in plant responses to viral infection remains limited. In this study, we investigate the role of NbWRKY40 in Nicotiana benthamiana resistance to tomato mosaic virus (ToMV). NbWRKY40 is significantly downregulated by ToMV infection, and subcellular localization analysis indicates that NbWRKY40 is targeted to the nucleus. In addition, NbWRKY40 activates W-box-dependent transcription in plants and shows transcriptional activation in yeast cells. Overexpressing NbWRKY40 (OEWRKY40) inhibits ToMV infection, whereas NbWRKY40 silencing confers susceptibility. The level of salicylic acid (SA) is significantly higher in OEWRKY40 plants compared with that of wild-type plants. In addition, transcript levels of the SA-biosynthesis gene (ICS1) and SA-signaling genes (PR1b and PR2) are dramatically higher in OEWRKY40 plants than in the control but lower in NbWRKY40-silenced plants than in the control. Furthermore, electrophoretic mobility shift assays show that NbWRKY40 can bind the W-box element of ICS1. Callose staining reveals that the plasmodesmata is decreased in OEWRKY40 plants but increased in NbWRKY40-silenced plants. Exogenous application of SA also reduces viral accumulation in NbWRKY40-silenced plants infected with ToMV. RT-qPCR indicates that NbWRKY40 does not affect the replication of ToMV in protoplasts. Collectively, our findings suggest that NbWRKY40 likely regulates anti-ToMV resistance by regulating the expression of SA, resulting in the deposition of callose at the neck of plasmodesmata, which inhibits viral movement.

15.
Materials (Basel) ; 12(10)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091668

RESUMO

Porosity-free bulk nanostructured nickel cannot be fabricated by conventional electroplating due to hydrogen bubbling at the cathode. Here, we developed a cathode-rotating electroplating technique to remove the bubbles in order to obtain millimeter-scale nanostructured nickel rods with low porosity. The grain sizes ranged from 20 to 300 nm. The range produced by the new technique was broader than those that have been reported. The heterogeneous microstructure contributed to high work hardening rate, yield strength, and ductility of the rods in tension. The ductility was larger than electroplated thin nickel film with comparable ultimate strength in the literature. Dislocations accumulated at pre-existing twins, grain boundaries, and at the grain interior mediated the plastic deformation of the rods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA