Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Med ; 13(15): e70072, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39108036

RESUMO

BACKGROUND: Our study aims to investigate the mechanisms through which Fc receptor-like A (FCRLA) promotes renal cell carcinoma (RCC) and to examine its significance in relation to tumor immune infiltration. MATERIALS AND METHODS: The correlation between FCRLA and data clinically related to RCC was explored using The Cancer Genome Atlas (TCGA), then validated using Gene Expression Omnibus (GEO) gene chip data. Enrichment and protein-protein interaction (PPI) network analyses were performed for FCRLA and its co-expressed genes. FCRLA was knocked down in RCC cell lines to evaluate its impact on biological behavior. Then the potential downstream regulators of FCRLA were determined by western blotting, and rescue experiments were performed for verification. The relevance between FCRLA and various immune cells was analyzed through GSEA, TIMER, and GEPIA tools. TIDE and ESTIMATE algorithms were used to predict the effect of FCRLA in immunotherapy. RESULTS: Fc receptor-like A was associated with clinical and T stages and could predict the M stage (AUC = 0.692) and 1-3- and 5-year survival rates (AUC = 0.823, 0.834, and 0.862) of RCC patients. Higher expression of FCLRA predicted an unfavorable overall survival (OS) in TCGA-RCC and GSE167573 datasets (p = 0.03, p = 0.04). FCRLA promoted the malignant biological behavior of RCC cells through the pERK1/2/-MMP2 pathway and was associated with tumor immune microenvironment in RCC. CONCLUSION: Fc receptor-like A is positively correlated with poor outcomes in RCC patients and plays an oncogenic role in RCC through the pERK1/2-MMP2 pathway. Patients with RCC might benefit from immunotherapy targeting FCRLA.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Receptores Fc/genética , Receptores Fc/metabolismo , Prognóstico , Microambiente Tumoral/imunologia , Masculino , Proliferação de Células , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Mapas de Interação de Proteínas , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-39149773

RESUMO

AlH3 has gained considerable attention as a fuel additive due to its ability to offer high specific impulse and superior combustion performance. However, few studies have focused on the fragmentation and agglomeration behavior of AlH3. This study investigated the effects of fragmentation of AlH3 and AlH3/PVDF particles on the thermal decomposition, ignition, agglomeration, and combustion of HTPB propellants. Thermal analysis indicated that AlH3 and AlH3/PVDF can accelerate the decomposition of ammonium perchlorate by abundant active sites for the adsorption of the decomposition intermediates. Single-particle combustion uncovered the mechanism behind the directional spray of molten Al from the AlH3 particle and the fragmentation of the AlH3/PVDF particle. The melting of porous Al induces particle shrinkage due to solid-liquid interfacial tension and the structural restoration of the oxide shell, which consequently results in the sealing of cracks in the oxide shell of AlH3. Additionally, the accumulation of internal tensile stress leads to the reopening of these cracks and the directional ejection of the molten Al. The flexible oxide shell contributes to a smaller minimum normalized diameter of the AlH3/PVDF particle, aiding in the generation of internal tensile stress, while the sublimation of AlF3 induced the fragmentation. Synchrotron-based X-ray imaging revealed the formation of aggregates promoted by molten Al, the splitting of AlH3 aggregates due to hydrogen explosion, and the enhanced fragmentation of AlH3/PVDF due to the synergistic effect of hydrogen explosion and the sublimation of AlF3. Compared to raw particles, the CCPs (condensed combustion products) of SP2 propellant display a 48% reduction in average size (D50 = 24.5 µm), whereas there is an over 89% decrease in particle size for the CCPs of SP3 propellant (D50 = 5.14 µm). This study contributes to understanding the fragmentation of AlH3 and AlH3/PVDF upon ignition and combustion, providing valuable insights for the development and optimization of propellants containing AlH3.

3.
J Orthop Surg Res ; 19(1): 440, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068450

RESUMO

OBJECTIVE: The aim of this study is to evaluate the clinical efficacy of injectable cemented hollow pedicle screw (CICPS) in the treatment of osteoporotic lumbar degenerative diseases through a large sample long-term follow-up study. Additionally, we aim to explore the risk factors affecting interbody fusion. METHODS: A total of 98 patients who underwent CICPS for transforaminal lumbar interbody fusion (TLIF) for osteoporotic lumbar degenerative disease from March 2011 to September 2017 were analyzed. X-ray and electronic computed tomography (CT) imaging data were collected during preoperative, postoperative, and follow-up periods. The data included changes in intervertebral space height (ΔH), screw failure, cement leakage (CL), and intervertebral fusion. The patients were divided into two groups based on their fusion status one year after surgery: satisfied group A and dissatisfied group B. Surgical data such as operation time, intraoperative bleeding volume and surgical complications were recorded, and visual analog scale (VAS) and Oswestry disability index (ODI) were used to evaluate the improvement of lumbar and leg pain. RESULTS: The mean follow-up time was 101.29 months (ranging from 70 to 128 months). A total of 320 CICPS were used, with 26 screws (8.13%) leaking, 3 screws (0.94%) experiencing cement augmentation failure, and 1 screw (0.31%) becoming loose and breaking. The remaining screws were not loose or pulled out. Female gender, decreased bone density, and CL were identified as risk factors affecting interbody fusion (P < 0.05). Early realization of interbody fusion can effectively prevent the loss of intervertebral space height (P < 0.05) and maintain the surgical treatment effect. Both VAS and ODI scores showed significant improvement during the follow-up period (P < 0.05). Binary logistic regression analysis revealed that decreased bone density and cement leakage were risk factors for prolonged interbody fusion. CONCLUSIONS: The results of long-term follow-up indicate that PMMA enhanced CICPS has unique advantages in achieving good clinical efficacy in the treatment of osteoporosis lumbar degenerative diseases. Attention should be paid to identify female gender, severe osteoporosis, and CL as risk factors affecting interbody fusion.


Assuntos
Cimentos Ósseos , Vértebras Lombares , Osteoporose , Parafusos Pediculares , Fusão Vertebral , Humanos , Feminino , Masculino , Vértebras Lombares/cirurgia , Vértebras Lombares/diagnóstico por imagem , Seguimentos , Idoso , Osteoporose/cirurgia , Osteoporose/complicações , Pessoa de Meia-Idade , Fusão Vertebral/métodos , Fusão Vertebral/instrumentação , Degeneração do Disco Intervertebral/cirurgia , Degeneração do Disco Intervertebral/diagnóstico por imagem , Resultado do Tratamento , Fatores de Tempo , Injeções , Estudos Retrospectivos
5.
J Org Chem ; 88(22): 15871-15880, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37882877

RESUMO

Herein, we report a novel method for the synthesis of thioesters and acyl disulfides via nickel-catalyzed reductive cross-electrophile coupling of acid chlorides with tetrasulfides. This approach for the synthesis of thioesters and acyl disulfides is convenient and practical under mild reaction conditions, relying on easy availability. In addition, a wide range of thioesters and acyl disulfides were obtained in medium to good yields with good functional group tolerance. Moreover, thioesters and acyl disulfides can also be prepared at the gram scale, indicating that they have certain potential for industrial application.

6.
Signal Transduct Target Ther ; 8(1): 345, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37699892

RESUMO

Amino acids are the building blocks of protein synthesis. They are structural elements and energy sources of cells necessary for normal cell growth, differentiation and function. Amino acid metabolism disorders have been linked with a number of pathological conditions, including metabolic diseases, cardiovascular diseases, immune diseases, and cancer. In the case of tumors, alterations in amino acid metabolism can be used not only as clinical indicators of cancer progression but also as therapeutic strategies. Since the growth and development of tumors depend on the intake of foreign amino acids, more and more studies have targeted the metabolism of tumor-related amino acids to selectively kill tumor cells. Furthermore, immune-related studies have confirmed that amino acid metabolism regulates the function of effector T cells and regulatory T cells, affecting the function of immune cells. Therefore, studying amino acid metabolism associated with disease and identifying targets in amino acid metabolic pathways may be helpful for disease treatment. This article mainly focuses on the research of amino acid metabolism in tumor-oriented diseases, and reviews the research and clinical research progress of metabolic diseases, cardiovascular diseases and immune-related diseases related to amino acid metabolism, in order to provide theoretical basis for targeted therapy of amino acid metabolism.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/genética , Aminoácidos , Ciclo Celular , Diferenciação Celular , Proliferação de Células
7.
Redox Rep ; 28(1): 2251234, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37642220

RESUMO

BACKGROUND: Metabolic alteration drives renal cell carcinoma (RCC) development, while the impact of melatonin (MLT), a neurohormone secreted during darkness, on RCC cell growth and underlying mechanisms remains unclear. METHODS: We detected concentration of metabolites through metabolomic analyses using UPLC-MS/MS, and the oxygen consumption rate was determined using the Seahorse Extracellular Flux analyzer. RESULTS: We observed that MLT effectively inhibited RCC cell growth both in vitro and in vivo. Additionally, MLT increased ROS levels, suppressed antioxidant enzyme activity, and induced apoptosis. Furthermore, MLT treatment upregulated key TCA cycle metabolites while reducing aerobic glycolysis products, leading to higher oxygen consumption rate, ATP production, and membrane potential. Moreover, MLT treatment suppressed phosphorylation of Akt, mTOR, and p70 S6 Kinase as well as the expression of HIF-1α/VEGFA in RCC cells; these effects were reversed by NAC (ROS inhibitors). Conversely, MLT synergistically inhibited cell growth with sunitinib and counteracted the Warburg effect induced by sunitinib in RCC cells. CONCLUSIONS: In conclusion, our results indicate that MLT treatment reverses the Warburg effect and promotes intracellular ROS production, which leads to the suppression of Akt/mTOR/S6K signaling pathway, induction of cell apoptosis, and synergistically inhibition of cell growth with sunitinib in RCC cells. Overall, this study provides new insights into the mechanisms underlying anti-tumor effect of MLT in RCC cells, and suggests that MLT might be a promising therapeutic for RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Melatonina , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Sunitinibe , Melatonina/farmacologia , Proteínas Proto-Oncogênicas c-akt , Cromatografia Líquida , Espécies Reativas de Oxigênio , Espectrometria de Massas em Tandem , Serina-Treonina Quinases TOR , Antioxidantes , Apoptose , Neoplasias Renais/tratamento farmacológico
8.
Sci Rep ; 13(1): 2392, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765080

RESUMO

After ovulation, the mitochondrial enzyme CYP11A1 cleavage the cholesterol into pregnenolone for progesterone synthesis, suggesting that mitochondrial dynamics play a vital role in the female reproductive system. The changes in the mitochondria dynamics throughout the ovarian cycle have been reported in literature, but the correlation to its role in the ovarian cycle remains unclear. In this study, mitochondrial fusion promotor, M1, was used to study the impact of mitochondria dynamics in the female reproductive system. Our results showed that M1 treatment in mice can lead to the disruptions of estrous cycles in vagina smears. The decrease in serum LH was recorded in the animal. And the inhibitions of progesterone secretion and ovulations were observed in ovarian culture. Although no significant changes in mitochondrial networks were observed in the ovaries, significant up-regulation of mitochondrial respiratory complexes was revealed in M1 treatments through transcriptomic analysis. In contrast to the estrogen and steroid biosynthesis up-regulated in M1, the molecules of extracellular matrix, remodeling enzymes, and adhesion signalings were decreased. Collectively, our study provides novel targets to regulate the ovarian cycles through the mitochondria. However, more studies are still necessary to provide the functional connections between mitochondria and the female reproductive systems.


Assuntos
Dinâmica Mitocondrial , Progesterona , Camundongos , Feminino , Animais , Proestro , Ciclo Estral/fisiologia , Ovário , Estradiol
10.
PeerJ ; 10: e13867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990905

RESUMO

Aims: Studies have observed changes in autophagic flux in the adipose tissue of type 2 diabetes patients with obesity. However, the role of autophagy in obesity-induced insulin resistance is unclear. We propose to confirm the effect of a high-fat diet (HFD) on autophagy and insulin signaling transduction from adipose tissue to clarify whether altered autophagy-mediated HFD induces insulin resistance, and to elucidate the possible mechanisms in autophagy-regulated adipose insulin sensitivity. Methods: Eight-week-old male C57BL/6 mice were fed with HFD to confirm the effect of HFD on autophagy and insulin signaling transduction from adipose tissue. Differentiated 3T3-L1 adipocytes were treated with 1.2 mM fatty acids (FAs) and 50 nM Bafilomycin A1 to determine the autophagic flux. 2.5 mg/kg body weight dose of Chloroquine (CQ) in PBS was locally injected into mouse epididymal adipose (10 and 24 h) and 40 µM of CQ to 3T3-L1 adipocytes for 24 h to evaluate the role of autophagy in insulin signaling transduction. Results: The HFD treatment resulted in a significant increase in SQSTM1/p62, Rubicon expression, and C/EBP homologous protein (CHOP) expression, yet the insulin capability to induce Akt (Ser473) and GSK3ß (Ser9) phosphorylation were reduced. PHLPP1 and PTEN remain unchanged after CQ injection. In differentiated 3T3-L1 adipocytes treated with CQ, although the amount of phospho-Akt stimulated by insulin in the CQ-treated group was significantly lower, CHOP expressions and cleaved caspase-3 were increased and bafilomycin A1 induced less accumulation of LC3-II protein. Conclusion: Long-term high-fat diet promotes insulin resistance, late-stage autophagy inhibition, ER stress, and apoptosis in adipose tissue. Autophagy suppression may not affect insulin signaling transduction via phosphatase expression but indirectly causes insulin resistance through ER stress or apoptosis.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Camundongos , Masculino , Animais , Dieta Hiperlipídica/efeitos adversos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Endogâmicos C57BL , Tecido Adiposo/metabolismo , Obesidade/tratamento farmacológico , Insulina/farmacologia , Autofagia
11.
BMC Genom Data ; 23(1): 63, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945500

RESUMO

BACKGROUND: It has been previously demonstrated that hyaluronan (HA) potentially regulates the initiation and propagation of bladder cancer (BLCA). HYAL3 encodes hyaluronidase and is a potential therapeutic target for BLCA. We aimed to explore the role that HYAL3 plays in BLCA pathogenesis. METHODS: HYAL3 expression in BLCA specimens was analyzed using The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) cohort as well as confirmed in cell lines and The Human Protein Atlas. Then, associations between HYAL3 expression and clinicopathological data were analyzed using survival curves and receiver-operating characteristic (ROC) curves. The functions of HYAL3 were further dissected using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and the protein-protein interaction network. Finally, we harnessed the Tumor IMmune Estimation Resource and Gene Expression Profiling Interactive Analysis to obtain correlations between HYAL3 expression, infiltrating immunocytes, and the corresponding immune marker sets. RESULTS: HYAL3 expression varied greatly between many types of cancers. In addition, a higher HYAL3 expression level predicted a poor overall survival (OS) in both TCGA-BLCA and GEO gene chips (P < 0.05). HYAL3 also exhibited an acceptable diagnostic ability for the pathological stage of BLCA (area under the receiver-operating characteristic curve = 0.769). Furthermore, HYAL3 acted as an independent prognostic factor in BLCA patients and correlated with the infiltration of various types of immunocytes, including B cells, CD8+ T cells, cytotoxic cells, T follicular helper cells, and T helper (Th) 2 cells. CONCLUSION: HYAL3 might serve as a potential biomarker for predicting poor OS in BLCA patients and correlated with immunocyte infiltration in BLCA.


Assuntos
Neoplasias da Bexiga Urinária , Biomarcadores Tumorais/genética , Linfócitos T CD8-Positivos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico , Neoplasias da Bexiga Urinária/genética
12.
Neurochem Res ; 47(8): 2244-2253, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35585298

RESUMO

Nicotinamide adenine dinucleotide (NAD) is a critical cosubstrate for enzymes involved in supplying energy to the brain. Nicotinamide riboside (NR), an NAD+ precursor, emerges as a neuroprotective factor after chronic brain insults. However, researchers have not determined whether it improves cognition after acute ischemia. In the present study, mice with middle cerebral artery occlusion were treated with NR chloride (NRC, 300 mg/kg, IP., 20 min after reperfusion). The results of the Morris water maze test revealed better recovery of learning and memory function in the NRC-treated group. Acute NRC treatment decreased hippocampal infarct volume, reduced neuronal loss and apoptosis in the hippocampus. Western blot and high-performance liquid chromatography assays of hippocampal tissues revealed that the activation of Sirtin-1 and adenosine 5' monophosphate-activated protein kinase was increased, the NAD content was elevated, and the production of adenosine triphosphate was strengthened by NRC. Collectively, acute NRC treatment increased the energy supply, reduced the neuronal loss and apoptosis, protected the hippocampus and ultimately promoted the recovery of cognitive function after brain ischemia.


Assuntos
Cloretos , NAD , Animais , Cognição , Hipocampo/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Camundongos , NAD/metabolismo , Niacinamida/análogos & derivados , Compostos de Piridínio
13.
Cancer Biother Radiopharm ; 37(2): 125-140, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32614608

RESUMO

Background: To explore the clinical significance of miR-125b-5p and its potential mechanisms in lung squamous cell carcinoma (LUSC). Materials and Methods: An integrated analysis of data from in-house quantitative real-time polymerase chain reaction (qRT-PCR), microRNA-sequencing, and microarray assays to appraise the expression level of miR-125b-5p in LUSC tissues compared to adjacent noncancerous controls. The authors identified the candidate targets of miR-125b-5p and conducted functional analysis using computational biology strategies from gene ontology, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, disease ontology (DO), and protein-protein interaction (PPI) network analyses to investigate the prospective mechanisms. Results: According to qRT-PCR results, the expression level of miR-125b-5p was markedly decreased in LUSC tissues compared to noncancerous control tissues. Receiver operating characteristic and summary receiver operating characteristic analyses showed that miR-125b-5p had good specificity and sensitivity for distinguishing LUSC tissue from noncancerous lung tissue. The standard mean difference revealed that men and women with lower expression levels of miR-125b-5p may have a higher risk for LUSC. KEGG analysis and DO analysis intimated that target genes were evidently enriched in pyrimidine metabolism and pancreatic carcinoma. The PPI network of the top assembled KEGG pathway indicated that RRM2, UMPS, UCK2, and CTPS1 were regarded as crucial target genes for miR-125b-5p, and RRM2 was eventually deemed a key target. Conclusions: The authors' findings implicate a low expression level of miR-125b-5p in LUSC. A tumor-suppressive role of miR-125b-5p is proposed, based on its effects on LUSC tumor growth, clinical stage progression, and lymph node metastasis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Pulmonares , MicroRNAs , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo
14.
Transl Stroke Res ; 13(1): 160-170, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33973144

RESUMO

Galectin-1 is found in the vasculature and has been confirmed to promote angiogenesis in several cancer models. Furthermore, galectin-1 has been demonstrated to improve the recovery of cerebral ischemia. However, whether vascular remodeling contributes to this improvement is still unknown. In the present study, photochemical cerebral ischemia was induced in both galectin-1-treated (2 µg/day, i.c.v, 3 days) and galectin-1 knockout mice. Laser speckle imaging and immunofluorescent staining demonstrated that circulation and vascular remodeling in the ischemic cortex were improved by galectin-1 treatment but disrupted in galectin-1 knockout mice. Western blot analysis showed that the expression of matrix metallopeptidase-9 and vascular endothelial growth factor (VEGF) was regulated by galectin-1 in vivo. To determine how galectin-1 influences endothelial cells, the expression of galectin-1 in bEnd.3 cells was increased by transfection with an expression plasmid and knocked down by siRNA. As demonstrated by quantitative RT-PCR and western blot analysis, the expression of metallopeptidase-9, VEGF, and VEGF receptors was upregulated by galectin-1 overexpression but downregulated after galectin-1 knockdown. Flow cytometry, Transwell assay, and capillary-like tube formation assay were performed on cells after gene manipulation as well as cells treated by exogenous galectin-1 after anoxia. It demonstrated that galectin-1 potentiated the cell proliferation, migration capacity, and tube formation ability. Taken together, these data suggest that by targeting vascular remodeling, galectin-1 contributes to the restoration of blood flow, which promotes the recovery of mice after cerebral ischemic insults.


Assuntos
Isquemia Encefálica , Fator A de Crescimento do Endotélio Vascular , Animais , Isquemia Encefálica/metabolismo , Infarto Cerebral/metabolismo , Células Endoteliais/metabolismo , Galectina 1/genética , Galectina 1/metabolismo , Isquemia , Camundongos , Camundongos Knockout , Neovascularização Fisiológica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Remodelação Vascular
15.
Int J Biol Sci ; 17(14): 3898-3910, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671207

RESUMO

Hypoxia and angiogenesis play key roles in the pathogenesis of esophageal squamous cell carcinoma (ESCC), but regulators linking these two pathways to drive tumor progression remain elusive. Here we provide evidence of ADAM9's novel function in ESCC progression. Increasing expression of ADAM9 was correlated with poor clinical outcomes in ESCC patients. Suppression of ADAM9 function diminished ESCC cell migration and in vivo metastasis in ESCC xenograft mouse models. Using cellular fractionation and imaging, we found a fraction of ADAM9 was present in the nucleus and was uniquely associated with gene loci known to be linked to the angiogenesis pathway demonstrated by genome-wide ChIP-seq. Mechanistically, nuclear ADAM9, triggered by hypoxia-induced translocation, functions as a transcriptional repressor by binding to promoters of genes involved in the negative regulation of angiogenesis, and thereby promotes tumor angiogenesis in plasminogen/plasmin pathway. Moreover, ADAM9 suppresses plasminogen activator inhibitor-1 gene transcription by interacting with its transcription factors at the promoter. Our findings uncover a novel regulatory mechanism of ADAM9 as a transcriptional regulator in angiogenesis and highlight ADAM9 as a promising therapeutic target for ESCC treatment.


Assuntos
Proteínas ADAM/fisiologia , Neoplasias Esofágicas/irrigação sanguínea , Carcinoma de Células Escamosas do Esôfago/irrigação sanguínea , Proteínas de Membrana/fisiologia , Neovascularização Patológica/fisiopatologia , Fatores de Transcrição/fisiologia , Animais , Movimento Celular , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos SCID , Neovascularização Patológica/genética , Inibidor 1 de Ativador de Plasminogênio/genética , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Nat Immunol ; 21(12): 1540-1551, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33020660

RESUMO

The metabolic challenges present in tumors attenuate the metabolic fitness and antitumor activity of tumor-infiltrating T lymphocytes (TILs). However, it remains unclear whether persistent metabolic insufficiency can imprint permanent T cell dysfunction. We found that TILs accumulated depolarized mitochondria as a result of decreased mitophagy activity and displayed functional, transcriptomic and epigenetic characteristics of terminally exhausted T cells. Mechanistically, reduced mitochondrial fitness in TILs was induced by the coordination of T cell receptor stimulation, microenvironmental stressors and PD-1 signaling. Enforced accumulation of depolarized mitochondria with pharmacological inhibitors induced epigenetic reprogramming toward terminal exhaustion, indicating that mitochondrial deregulation caused T cell exhaustion. Furthermore, supplementation with nicotinamide riboside enhanced T cell mitochondrial fitness and improved responsiveness to anti-PD-1 treatment. Together, our results reveal insights into how mitochondrial dynamics and quality orchestrate T cell antitumor responses and commitment to the exhaustion program.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Contagem de Linfócitos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Dinâmica Mitocondrial/imunologia , Biomarcadores , Epigênese Genética , Epigenômica , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Mitofagia , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Niacinamida/farmacologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Estresse Fisiológico , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
17.
Sci Rep ; 9(1): 17451, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767891

RESUMO

Previous studies have demonstrated the important role of kisspeptin in impaired glucose-stimulated insulin secretion (GSIS). In addition, it was reported that the activation of autophagy in pancreatic ß-cells decreases insulin secretion by selectively degrading insulin granules. However, it is currently unknown whether kisspeptin suppresses GSIS in ß-cells by activating autophagy. To investigate the involvement of autophagy in kisspeptin-regulated insulin secretion, we overexpressed Kiss1 in NIT-1 cells to mimic the long-term exposure of pancreatic ß-cells to kisspeptin during type 2 diabetes (T2D). Interestingly, our data showed that although kisspeptin potently decreases the intracellular proinsulin and insulin ((pro)insulin) content and insulin secretion of NIT-1 cells, autophagy inhibition using bafilomycin A1 and Atg5 siRNAs only rescues basal insulin secretion, not kisspeptin-impaired GSIS. We also generated a novel in vivo model to investigate the long-term exposure of kisspeptin by osmotic pump. The in vivo data demonstrated that kisspeptin lowers GSIS and (pro)insulin levels and also activated pancreatic autophagy in mice. Collectively, our data demonstrated that kisspeptin suppresses both GSIS and non-glucose-stimulated insulin secretion of pancreatic ß-cells, but only non-glucose-stimulated insulin secretion depends on activated autophagic degradation of (pro)insulin. Our study provides novel insights for the development of impaired insulin secretion during T2D progression.


Assuntos
Autofagia/fisiologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Kisspeptinas/fisiologia , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/fisiopatologia , Genes Reporter , Glucose/farmacologia , Kisspeptinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Proinsulina/metabolismo , Proteínas Recombinantes/metabolismo , Transfecção
18.
Bioorg Med Chem ; 27(13): 2801-2812, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31079967

RESUMO

Deregulation of receptor tyrosine kinase c-Met has been reported in human cancers and is considered as an attractive target for small molecule drug discovery. In this study, a series of 4-phenoxyquinoline derivatives bearing sulfonylurea moiety were designed, synthesized and evaluated for their c-Met kinase inhibition and cytotoxicity against tested four cell lines in vitro. The pharmacological data indicated that most of the tested compounds showed moderate to significant potency as compared with foretinib, with the most promising compound 13x (c-Met kinase IC50 = 1.98 nM) demonstrated relatively good selectivity versus 10 other tyrosine kinases and remarkable cytotoxicities against HT460, MKN-45, HT-29 and MDA-MB-231 with IC50 values of 0.055 µM, 0.064 µM, 0.16 µM and 0.49 µM, respectively. The preliminary structure activity relationships indicated that a sulfonylurea moiety as linker as well as mono-EGWs (such as R1 = 4-F) on the terminal phenyl rings contributed to the antitumor activity.


Assuntos
Inibidores de Proteínas Quinases/uso terapêutico , Compostos de Sulfonilureia/química , Compostos de Sulfonilureia/síntese química , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade
19.
Anal Chem ; 90(5): 3335-3340, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29411603

RESUMO

A highly sensitive and selective colorimetric assay based on a multifunctional molecular beacon with palindromic tail (PMB) was proposed for the detection of target p53 gene. The PMB probe can serve as recognition element, primer, and polymerization template and contains a nicking site and a C-rich region complementary to a DNAzyme. In the presence of target DNA, the hairpin of PMB is opened, and the released palindromic tails intermolecularly hybridize with each other, triggering the autonomous polymerization/nicking/displacement cycles. Although only one type of probe is involved, the system can execute triple and continuous polymerization strand displacement amplifications, generating large amounts of G-quadruplex fragments. These G-rich fragments can bind to hemin and form the DNAzymes that possess the catalytic activity similar to horseradish peroxidase, catalyzing the oxidation of ABTS by H2O2 and producing the colorimetric signal. Utilizing the newly proposed sensing system, target DNA can be detected down to 10 pM with a linear response range from 10 pM to 200 nM, and mutant target DNAs are able to be distinguished even by the naked eye. The desirable detection sensitivity, high specificity, and operation convenience without any separation step and chemical modification demonstrate that the palindromic molecular beacon holds the potential for detecting and monitoring a variety of nucleic acid-related biomarkers.


Assuntos
Colorimetria/métodos , DNA Catalítico/química , DNA/análise , Genes p53/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Sequência de Bases , Benzotiazóis/química , Técnicas Biossensoriais/métodos , Compostos Cromogênicos/química , DNA/genética , DNA Catalítico/genética , Neoplasias/diagnóstico , Neoplasias/genética , Hibridização de Ácido Nucleico , Ácidos Sulfônicos/química
20.
Pathol Res Pract ; 214(2): 195-206, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29258768

RESUMO

PURPOSE: To investigate the clinical value and potential molecular mechanisms of miR-1 in clear cell renal cell carcinoma (ccRCC). METHODS: We searched the Gene Expression Omnibus (GEO), ArrayExpress, several online publication databases and the Cancer Genome Atlas (TCGA). Continuous variable meta-analysis and diagnostic meta-analysis were conducted, both in Stata 14, to show the expression of miR-1 in ccRCC. Furthermore, we acquired the potential targets of miR-1 from datasets that transfected miR-1 into ccRCC cells, online prediction databases, differentially expressed genes from TCGA and literature. Subsequently bioinformatics analysis based on aforementioned selected target genes was conducted. RESULTS: The combined effect was -0.92 with the 95% confidence interval (CI) of -1.08 to -0.77 based on fixed effect model (I2 = 81.3%, P < 0.001). No publication bias was found in our investigation. Sensitivity analysis showed that GSE47582 and 2 TCGA studies might cause heterogeneity. After eliminating them, the combined effect was -0.47 (95%CI: -0.78, -0.16) with I2 = 18.3%. As for the diagnostic meta-analysis, the combined sensitivity and specificity were 0.90 (95%CI: 0.61, 0.98) and 0.63 (95%CI: 0.39, 0.82). The area under the curve (AUC) in the summarized receiver operating characteristic (SROC) curve was 0.83 (95%CI: 0.80, 0.86). No publication bias was found (P = 0.15). We finally got 67 genes which were defined the promising target genes of miR-1 in ccRCC. The most three significant KEGG pathways based on the aforementioned genes were Complement and coagulation cascades, ECM-receptor interaction and Focal adhesion. CONCLUSION: The downregulation of miR-1 might play an important role in ccRCC by targeting its target genes.


Assuntos
Carcinoma Hepatocelular/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Humanos , Prognóstico , Análise Serial de Tecidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA