Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Pulm Med ; 24(1): 229, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730387

RESUMO

BACKGROUND: Since COVID-19 became a global epidemic disease in 2019, pulmonary fibrosis (PF) has become more prevalent among persons with severe infections, with IPF being the most prevalent form. In traditional Chinese medicine, various disorders are treated using Sinomenine (SIN). The SIN's strategy for PF defense is unclear. METHODS: Bleomycin (BLM) was used to induce PF, after which inflammatory factors, lung histological alterations, and the TGF-/Smad signaling pathway were assessed. By administering various dosages of SIN and the TGF- receptor inhibitor SB-431,542 to human embryonic lung fibroblasts (HFL-1) and A549 cells, we were able to examine proliferation and migration as well as the signaling molecules implicated in Epithelial-Mesenchymal Transition (EMT) and Extra-Cellular Matrix (ECM). RESULTS: In vivo, SIN reduced the pathological changes in the lung tissue induced by BLM, reduced the abnormal expression of inflammatory cytokines, and improved the weight and survival rate of mice. In vitro, SIN inhibited the migration and proliferation by inhibiting TGF-ß1/Smad3, PI3K/Akt, and NF-κB pathways, prevented the myofibroblasts (FMT) of HFL-1, reversed the EMT of A549 cells, restored the balance of matrix metalloenzymes, and reduced the expression of ECM proteins. CONCLUSION: SIN attenuated PF by down-regulating TGF-ß/Smad3, PI3K/Akt, and NF-κB signaling pathways, being a potential effective drug in the treatment of PF.


Assuntos
Morfinanos , Proteínas Proto-Oncogênicas c-akt , Fibrose Pulmonar , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Células A549 , Bleomicina , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Morfinanos/farmacologia , Morfinanos/uso terapêutico , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
2.
Polymers (Basel) ; 15(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37836027

RESUMO

We report the feasibility of using gelatin hydrogel networks as the host for the in situ, environmentally friendly formation of well-dispersed zinc oxide nanoparticles (ZnONPs) and the evaluation of the antibacterial activity of the as-prepared composite hydrogels. The resulting composite hydrogels displayed remarkable biocompatibility and antibacterial activity as compared to those in previous studies, primarily attributed to the uniform distribution of the ZnONPs with sizes smaller than 15 nm within the hydrogel network. In addition, the composite hydrogels exhibited better thermal stability and mechanical properties as well as lower swelling ratios compared to the unloaded counterpart, which could be attributed to the non-covalent interactions between the in situ formed ZnONPs and polypeptide chains. The presence of ZnONPs contributed to the disruption of bacterial cell membranes, the alteration of DNA molecules, and the subsequent release of reactive oxygen species within the bacterial cells. This chain of events culminated in bacterial cell lysis and DNA fragmentation. This research underscores the potential benefits of incorporating antibacterial agents into hydrogels and highlights the significance of preparing antimicrobial agents within gel networks.

3.
Biomacromolecules ; 21(9): 3836-3846, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32790281

RESUMO

Cancer metastasis is a central oncology concern that worsens patient conditions and increases mortality in a short period of time. During metastatic events, mitochondria undergo specific physiological alterations that have emerged as notable therapeutic targets to counter cancer progression. In this study, we use drug-free, cationic peptide fibrillar assemblies (PFAs) formed by poly(L-Lysine)-block-poly(L-Threonine) (Lys-b-Thr) to target mitochondria. These PFAs interact with cellular and mitochondrial membranes via electrostatic interactions, resulting in membranolysis. Charge repulsion and hydrogen-bonding interactions exerted by Lys and Thr segments dictate the packing of the peptides and enable the PFAs to display enhanced membranolytic activity toward cancer cells. Cytochrome c (cyt c), endonuclease G, and apoptosis-inducing factor were released from mitochondria after treatment of lung cancer cells, subsequently inducing caspase-dependent and caspase-independent apoptotic pathways. A metastatic xenograft mouse model was used to show how the PFAs significantly suppressed lung metastasis and inhibited tumor growth, while avoiding significant body weight loss and mortality. Antimetastatic activities of PFAs are also demonstrated by in vitro inhibition of lung cancer cell migration and clonogenesis. Our results imply that the cationic PFAs achieved the intended and targeted mitochondrial damage, providing an efficient antimetastatic therapy.


Assuntos
Neoplasias Pulmonares , Animais , Apoptose , Caspases , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Mitocôndrias
4.
Mater Sci Eng C Mater Biol Appl ; 112: 110923, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409073

RESUMO

We report an efficient growth factor delivering system based on polypeptide/heparin composite hydrogels for wound healing application. Linear and star-shaped poly(l-lysine) (l-PLL and s-PLL) were chosen due to not only their cationic characteristics, facilitating the efficient complexation of negatively charged heparin, but also the ease to tune the physical and mechanical properties of as-prepared hydrogels simply by varying polypeptide topology and chain length. The results showed that polymer topology can be an additional parameter to tune hydrogel properties. Our experimental data showed that these composite hydrogels exhibited low hemolytic activity and good cell compatibility as well as excellent antibacterial activity, making them ideal as wound dressing materials. Unlike other heparin-based hydrogels, these composite hydrogels with heparin densely deposited on the surface can increase the stabilization and concentration of growth factor, which can facilitate the healing process as confirmed by our in vivo animal model. We believe that these PLL/heparin composite hydrogels are promising wound dressing materials and may have potential applications in other biomedical fields.


Assuntos
Antibacterianos/química , Heparina/química , Hidrogéis/química , Peptídeos/química , Cicatrização , Animais , Antibacterianos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Hidrogéis/metabolismo , Hidrogéis/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Polilisina/química , Pele/patologia , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/efeitos dos fármacos
5.
Int J Biol Macromol ; 146: 1050-1059, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31726123

RESUMO

Hydrogels containing silver nanoparticles (AgNPs) were recently found to exhibit excellent antibacterial properties against both gram-negative/positive bacteria and fungi. In this study, we reported the synthesis of AgNPs-contained gelatin-polyethylene glycol-dopamine (AgNP-GPD) hydrogels via the in situ formation of AgNPs in GPD polypeptide solution, followed by an enzymatic cross-linking reaction to form hydrogels. The experimental results showed that the reducing reaction exerted by GPD polypeptides under physiological conditions can afford the formation of AgNPs in situ in the polypeptide solution without the need for additional reducing agents and/or processes such as UV or thermal treatments and then the hydrogelation of GPD polypeptide solution containing AgNPs were preceeded via enzymatic cross-linking reaction. It was found that the gelation time, hydrogel mechanical property, degree of swelling and degree of enzymatic degradation for both GPD and AgNP-GPD hydrogels can be tuned by varying enzyme/oxidative agent concentration, catechol content, and reducing reaction conditions such as reaction time and silver ion concentration. Importantly, AgNP-GPD hydrogels exhibit excellent antibacterial properties against gram-negative and gram-positive bacteria. This type of hydrogel is a promising biomaterial for biomedical applications including wound healing and tissue engineering.


Assuntos
Antibacterianos/farmacologia , Dopamina/química , Enzimas/metabolismo , Gelatina/química , Hidrogéis/química , Nanopartículas Metálicas/química , Polietilenoglicóis/química , Prata/química , Animais , Bovinos , Reagentes de Ligações Cruzadas/química , Módulo de Elasticidade , Liofilização , Gelatina/síntese química , Hidrogéis/síntese química , Peróxido de Hidrogênio/química , Cinética , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Microesferas , Peptídeos/síntese química , Peptídeos/química , Polietilenoglicóis/síntese química , Proteólise , Espectroscopia de Prótons por Ressonância Magnética , Espectrofotometria Ultravioleta
6.
Mater Sci Eng C Mater Biol Appl ; 102: 85-95, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31147057

RESUMO

Bacterial infections are often treated inadequately. Sepsis, being one of its most severe forms, is a multi-layered, life-threatening syndrome induced by rampant immune responses, like cytokine storms, that leads to high morbidity and death of infected patients. Particularly, the current increment in resistant bacterial strains and the lack of creative antibiotics to counter such menace are central reasons to the worsening of the situation. To avoid the said crisis, the antimicrobial peptides (AMPs) were used to target cell wall components, such as lipopolysaccharides (LPS), seems to have the most promise. These combine the ability of broad-spectrum bactericidal activity with low potential for induction of resistance. Inhibition of cytokine storms induced by activated immune cells has been considered a feasible treatment for in sepsis. One of the therapeutic approaches widely utilized in inducing apoptosis in inflammatory cells is the use of tumor necrosis factor (TNF)-related apoptosis-inducing ligands (TRAIL), which trigger an extrinsic apoptotic pathway via death receptors. Herein, we report TRAIL encapsulated in a bactericidal polypeptide-crosslinked nanogel that suppressed Klebsiella pneumoniae infection and overactive macrophages. Of interest, nanogel and TRAIL-nanogel treatments were more toxic towards LPS-activated cells than to naïve cells in cell viability assays. Treatment with TRAIL-nanogel significantly prolonged survival in septic mice and reduced bacterial numbers in circulation. As such, TRAIL-nanogel may be promising as a therapeutic agent for treating bacteria-infected diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Reagentes de Ligações Cruzadas/química , Klebsiella pneumoniae/efeitos dos fármacos , Peptídeos/química , Polietilenoglicóis/química , Polietilenoimina/química , Sepse/tratamento farmacológico , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Citocinas/metabolismo , Humanos , Hidrodinâmica , Mediadores da Inflamação/metabolismo , Rim/efeitos dos fármacos , Rim/lesões , Rim/patologia , Klebsiella pneumoniae/crescimento & desenvolvimento , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanogéis , Tamanho da Partícula , Peptídeos/síntese química , Peptídeos/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Células RAW 264.7 , Sepse/microbiologia , Sepse/patologia , Eletricidade Estática , Análise de Sobrevida
7.
Proc Natl Acad Sci U S A ; 115(40): E9449-E9458, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224460

RESUMO

Normal neural development is essential for the formation of neuronal networks and brain function. Cutaneous T cell lymphoma-associated antigen 5 (cTAGE5)/meningioma expressed antigen 6 (MEA6) plays a critical role in the secretion of proteins. However, its roles in the transport of nonsecretory cellular components and in brain development remain unknown. Here, we show that cTAGE5/MEA6 is important for brain development and function. Conditional knockout of cTAGE5/MEA6 in the brain leads to severe defects in neural development, including deficits in dendrite outgrowth and branching, spine formation and maintenance, astrocyte activation, and abnormal behaviors. We reveal that loss of cTAGE5/MEA6 affects the interaction between the coat protein complex II (COPII) components, SAR1 and SEC23, leading to persistent activation of SAR1 and defects in COPII vesicle formation and transport from the endoplasmic reticulum to the Golgi, as well as disturbed trafficking of membrane components in neurons. These defects affect not only the transport of materials required for the development of dendrites and spines but also the signaling pathways required for neuronal development. Because mutations in cTAGE5/MEA6 have been found in patients with Fahr's disease, our study potentially also provides insight into the pathogenesis of this disorder.


Assuntos
Antígenos de Neoplasias/metabolismo , Astrócitos/metabolismo , Encéfalo/embriologia , Proteínas de Neoplasias/metabolismo , Neurônios/metabolismo , Animais , Antígenos de Neoplasias/genética , Astrócitos/citologia , Transporte Biológico Ativo/genética , Encéfalo/citologia , Complexo I de Proteína do Envoltório/genética , Complexo I de Proteína do Envoltório/metabolismo , Camundongos , Camundongos Knockout , Mutação , Proteínas de Neoplasias/genética , Neurônios/citologia
8.
Cell Death Dis ; 9(8): 824, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068904

RESUMO

Excessive cholesterol contributes to the development of cardiovascular diseases. Berberine (BBR) has been reported to regulate cholesterol homeostasis. Here, we found that BBR could ameliorate the hepatic autophagic flux blockade caused by cholesterol overloading. The underlying mechanism included lowering hepatic cholesterol level, modulating the cholesterol distribution targeting the plasma membrane by decreasing sterol carrier protein 2 expression and inhibiting cyclooxygenase 2-mediated production of prostaglandin metabolites, which decreased the phosphorylation of Akt/mTOR. Our study provides evidences that BBR could be a therapeutic agent for protecting liver under cholesterol overloading via the regulation of autophagic flux.


Assuntos
Autofagia/efeitos dos fármacos , Berberina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Fígado/metabolismo , Prostaglandinas/metabolismo , Animais , Colesterol/metabolismo , Colesterol/farmacologia , Ciclo-Oxigenase 2/química , Dieta Hiperlipídica , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Sequestossoma-1/metabolismo , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA