Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
2.
Viruses ; 16(4)2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38675921

RESUMO

Porcine Deltacoronavirus (PDCoV) is a newly identified coronavirus that causes severe intestinal lesions in piglets. However, the understanding of how PDCoV interacts with human hosts is limited. In this study, we aimed to investigate the interactions between PDCoV and human intestinal cells (HIEC-6) by analyzing the transcriptome at different time points post-infection (12 h, 24 h, 48 h). Differential gene analysis revealed a total of 3560, 5193, and 4147 differentially expressed genes (DEGs) at 12 h, 24 h, and 48 h, respectively. The common genes among the DEGs at all three time points were enriched in biological processes related to cytokine production, extracellular matrix, and cytokine activity. KEGG pathway analysis showed enrichment of genes involved in the p53 signaling pathway, PI3K-Akt signaling pathway, and TNF signaling pathway. Further analysis of highly expressed genes among the DEGs identified significant changes in the expression levels of BUB1, DDIT4, ATF3, GBP2, and IRF1. Comparison of transcriptome data at 24 h with other time points revealed 298 DEGs out of a total of 6276 genes. KEGG analysis of these DEGs showed significant enrichment of pathways related to viral infection, specifically the PI3K-Akt and P38 MAPK pathways. Furthermore, the genes EFNA1 and KITLG, which are associated with viral infection, were found in both enriched pathways, suggesting their potential as therapeutic or preventive targets for PDCoV infection. The enhancement of PDCoV infection in HIEC-6 was observed upon inhibition of the PI3K-Akt and P38 MAPK signaling pathways using sophoridine. Overall, these findings contribute to our understanding of the molecular mechanisms underlying PDCoV infection in HIEC-6 cells and provide insights for developing preventive and therapeutic strategies against PDCoV infection.


Assuntos
Perfilação da Expressão Gênica , Transdução de Sinais , Transcriptoma , Animais , Humanos , Linhagem Celular , Infecções por Coronavirus/virologia , Infecções por Coronavirus/genética , Deltacoronavirus/genética , Interações Hospedeiro-Patógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Suínos , Doenças dos Suínos/virologia , Doenças dos Suínos/genética
3.
Int Immunopharmacol ; 128: 111441, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171056

RESUMO

Many studies have shown that liver metastasis can weaken the efficacy of immunotherapy. Immunotherapy combined with radiotherapy or anti-angiogenic therapy has been proven to have synergistic anti-tumor effects. So we devote to explore whether the combination of the three therapies can exert effective anti-tumor effects on liver metastasis. The clinical information of 118 patients with liver metastasis were collected to compare the intrahepatic progression-free survival between immunotherapy and immunotherapy combined with other treatments. We used Lewis lung cancer (LLC) cell to establish a mouse liver metastasis tumor model and record tumor burden and survival. Tumor-infiltrating immune cells detected by flow cytometry. RNA sequencing was performed and the proportion of immune cells were analyzed by TIMER2.0 database. Compared with immunotherapy group, the combination therapy group showed a trend for longer median intrahepatic progression-free survival. Radiotherapy combined with PD-1 inhibitor and Anlotinib can inhibit liver metastasis and subcutaneous tumor growth and prolong the survival compared with other groups in vivo. Compared with the anti-PD-1 treatment group, triple therapy can increase CD4+T, CD8+T, and IFN-γ+CD8+T cells and decrease infiltration of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) in tumors. PPAR signaling pathway were significantly activated and CD8+T and dendritic cells (DC) were increased in the triple therapy group compared to the PD-1 inhibitor combined with Anlotinib group. Radiotherapy combined with PD-1 inhibitor and Anlotinib can effectively exert anti-tumor efficacy and reshape the tumor immune microenvironment by increasing the infiltration of anti-tumor immune cells and reducing the infiltration of immunosuppressive immune cells.


Assuntos
Indóis , Neoplasias Hepáticas , Neoplasias Pulmonares , Quinolinas , Camundongos , Animais , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia , Microambiente Tumoral , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos
4.
Mater Today Bio ; 23: 100887, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38144518

RESUMO

Osteosarcoma (OS) is the third most common malignancy in adolescence. Currently, the treatments of OS confront great obstacles of tumor recurrence and critical bone defects after surgery, severely affecting the survival rates and living qualities of patients. Hence, it is urged to develop distinct biomaterials with both efficient tumor therapeutic and osteogenic functions. Although photothermal therapy (PTT) has aroused expanding interest, characterizing negligible invasiveness and high spatiotemporal adjustment, few studies discussed its drawbacks, such as thermal injury to adjacent normal tissue and exceeded laser power density, implying that focusing on sensitizing OS to PTT instead of simply elevating the laser power density may be a fresh way to enhance the PTT efficacy and attenuate the side/adverse effects. Herein, we successfully constructed 3D-printing silicene bioactive glass scaffolds with preferable PTT efficacy at the second near-infrared (NIR-II) biowindow and outstanding osteogenic biofunctions owing to the release of bioactive elements during degradation. Impressively, a histone demethylase inhibitor, IOX1, was introduced before PTT to sensitize OS to thermal therapy and minimize the side/adverse effects. This work offered a distinctive paradigm for optimizing the PTT efficacy of osteogenic scaffolds against OS with epigenetic modulation agents.

5.
Math Biosci Eng ; 20(8): 14222-14240, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37679133

RESUMO

Possible complications, such as intestinal obstruction and inflammation of the intestinal tract, can have a detrimental effect on the prognosis after surgery for Hirschsprung disease. The aim of this study was to investigate the potential targets and mechanisms of action of echinacoside to improve the prognosis of Hirschsprung disease. Genes related to the disease were obtained through analysis of the GSE96854 dataset and four databases: OMIM, DisGeNET, Genecard and NCBI. The targets of echinacoside were obtained from three databases: PharmMapper, Drugbank and TargetNet. The intersection of disease genes and drug targets was validated by molecular docking. The valid docked targets were further explored for their expression by using immunohistochemistry. In this study, enrichment analysis was used to explore the mechanistic pathways involved in the genes. Finally, we identified CA1, CA2, CA9, CA12, DNMT1, RIMS2, RPGRIP1L and ZEB2 as the core targets. Except for ZEB2, which is predominantly expressed in brain tissue, the remaining seven genes show tissue specificity and high expression in the gastrointestinal tract. RIMS2 possesses a high mutation phenomenon in pan-cancer, while a validated ceRNA network of eight genes was constructed. The core genes are involved in several signaling pathways, including the one-carbon metabolic process, carbonate dehydratase activity and others. This study may help us to further understand the pharmacological mechanisms of echinacoside and provide new guidance and ideas to guide the treatment of Hirschsprung disease.


Assuntos
Doença de Hirschsprung , Humanos , Doença de Hirschsprung/tratamento farmacológico , Doença de Hirschsprung/genética , Pós , Simulação de Acoplamento Molecular , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico
6.
Phytomedicine ; 118: 154980, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37499344

RESUMO

BACKGROUND: Airway epithelial barrier dysfunction is highly related to the pathogenesis of chronic obstructive pulmonary disease (COPD). Effective-component combination (ECC) derived from Bufei Yishen formula (BYF) is an effective treatment regimen for patients with COPD and has previously been found to attenuate COPD and airway epithelial inflammation in rats. PURPOSE: To determine the mechanism underlying the protective effects of ECC-BYF against the disruption of the airway epithelial barrier in COPD. METHODS: The protective effects of ECC-BYF on the airway epithelial barrier were investigated in a rat COPD model. BEAS-2B epithelial cells were stimulated with cigarette smoke extract (CSE) to determine the direct effects of ECC-BYF on epithelial barrier function and aryl hydrocarbon receptor (AHR)/ epidermal growth factor receptor (EGFR) signaling. RESULTS: The results revealed that ECC-BYF attenuated COPD in rats and maintained the airway epithelial barrier by upregulating the expression of apical junction proteins, including occludin (OCC), zonula occludens (ZO)-1, and E-cadherin (E-cad). In BEAS-2B cells, ECC-BYF decreased permeability, increased transepithelial electrical resistance, and prevented the decrease in OCC, ZO-1, and E-cad expression induced by CSE exposure. In addition, transcriptomics and network analysis revealed that the protective effects of ECC-BYF may be related to multiple signaling pathways, including ErbB, AHR, and PI3K-Akt-mTOR pathways. ECC-BYF treatment suppressed the protein levels of p-EGFR and p-ERK1/2 and mRNA levels of CYP1A1 in CSE-exposed BEAS-2B cells as well as the protein levels of p-EGFR, p-ERK1/2, and CYP1A1 in the lungs of rats with COPD. In BEAS-2B cells, the AHR agonist FICZ weakened the protective effect of ECC-BYF on the epithelial barrier by suppressing the increase in ZO-1 and OCC expression induced by ECC-BYF and preventing the inhibitory effects of ECC-BYF on EGFR phosphorylation. CONCLUSIONS: This is the first study to demonstrate the protective effect of ECC-BYF on airway epithelial barrier function. The underlying mechanism may be associated with the suppression of the AHR/EGFR pathway to promote apical junction protein adhesion.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Receptores de Hidrocarboneto Arílico , Ratos , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptores ErbB/metabolismo , Células Epiteliais
7.
Small ; 19(44): e2302575, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37394717

RESUMO

Osteosarcoma (OS) is the most frequent osseous neoplasm among young people aged 10-20. Currently, the leading treatment for osteosarcoma is a combination of surgery and chemotherapy. However, the mortality remains high due to chemoresistance, metastasis, and recurrence, attributing to the existence of cancer stem cells (CSCs) as reported. To target CSCs, differentiation therapy attracts increasing attention, inducing CSCs to bulk tumor cells with elevated reactive oxygen species (ROS) levels and less chemoresistance. Moreover, increasing studies have implied that ferroptosis is a promising approach to eliminating cancer cells through eliciting oxidative damage and subsequent apoptosis, effectively bypassing chemoresistance. Here, a cancer-cell-membrane-decorated biocompatible formulation (GA-Fe@CMRALi liposome) is constructed to combat OS efficiently by combining distinct differentiation and ferroptosis therapies through magnified ROS-triggered ferroptosis and apoptosis with homologous target capability to tumor sites. The combinational approach exhibited favorable therapeutic efficacy against OS in vitro and in vivo. Impressively, the potential mechanisms are revealed by mRNA sequencing. This study provides a tactical design and typical paradigm of the synergized differentiation and ferroptosis therapies to combat heterogeneous OS.


Assuntos
Neoplasias Ósseas , Ferroptose , Osteossarcoma , Humanos , Adolescente , Espécies Reativas de Oxigênio , Apoptose , Osteossarcoma/tratamento farmacológico , Neoplasias Ósseas/tratamento farmacológico , Diferenciação Celular , Linhagem Celular Tumoral
8.
Bioconjug Chem ; 34(7): 1316-1326, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37330989

RESUMO

Inflammation-related diseases affect large populations of people in the world and cause substantial healthcare burdens, which results in significant costs in time, material, and labor. Preventing or relieving uncontrolled inflammation is critical for the treatment of these diseases. Herein, we report a new strategy for alleviating inflammation by macrophage reprogramming via targeted reactive oxygen species (ROS) scavenging and cyclooxygenase-2 (COX-2) downregulation. As a proof of concept, we synthesize a multifunctional compound named MCI containing a mannose-based macrophage targeting moiety, an indomethacin (IMC)-based segment for inhibiting COX-2, and a caffeic acid (CAF)-based section for ROS clearance. As revealed by a series of in vitro experiments, MCI could significantly attenuate the expression of COX-2 and the level of ROS, leading to M1 to M2 macrophage reprogramming, as evidenced by the reduction and the elevation in the levels of pro-inflammatory M1 markers and anti-inflammatory M2 markers, respectively. Furthermore, in vivo experiments show MCI's promising therapeutic effects on rheumatoid arthritis (RA). Our work illustrates the success of targeted macrophage reprogramming for inflammation alleviation, which sheds light on the development of new anti-inflammatory drugs.


Assuntos
Inflamação , Macrófagos , Humanos , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Regulação para Baixo , Inflamação/tratamento farmacológico , Inflamação/metabolismo
9.
Funct Integr Genomics ; 23(2): 128, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37071224

RESUMO

Hepatocellular carcinoma (HCC) is a malignant tumor with high incidence worldwide. The underlying mechanisms remain poorly understood. The DNA metabolic process of homologous recombination repair (HRR) has been linked to a high probability of tumorigenesis and drug resistance. This study aimed to determine the role of HRR in HCC and identify critical HRR-related genes that affect tumorigenesis and prognosis. A total of 613 tumor and 252 para-carcinoma tissue samples were collected from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) to obtain differentially expressed genes (DEGs). HRR-related genes were assessed using gene enrichment and pathway analyses. Survival analysis was performed using the Kaplan-Meier method in the Gene Expression Profiling Interactive Analysis portal. The levels of RAD54L in the HRR pathway were detected by RT-qPCR and western blotting in para-carcinoma and HCC tissues and in L02 normal human liver cells and Huh7 HCC cells. Immunohistochemistry (IHC) was performed on the clinical specimens to determine the connection between gene expression and clinical features. Bioinformatics analysis revealed that the HRR pathway was enriched in HCC tissues. Upregulation of HRR pathway DEGs in HCC tissues was positively correlated with tumor pathological staging and negatively associated with patient overall survival. RAD54B, RAD54L, and EME1 genes in the HRR pathway were screened as markers for predicting HCC prognosis. RT-qPCR identified RAD54L as the most significantly expressed of the three genes. Western blotting and IHC quantitative analyses further demonstrated that RAD54L protein levels were higher in HCC tissues. IHC analysis of 39 pairs of HCC and para-carcinoma tissue samples also revealed an association between RAD54L and Edmondson-Steiner grade and the proliferation-related gene Ki67. The collective findings positively correlate RAD54L in the HRR signaling pathway with HCC staging and implicate RAD54L as a marker to predict HCC progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Reparo de DNA por Recombinação , Perfilação da Expressão Gênica/métodos , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética
10.
Thorac Cancer ; 14(16): 1440-1450, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37055376

RESUMO

BACKGROUND: Radioresistance hinders radiotherapy for the treatment of lung cancer. Kinesin light chain-2 (KLC2) has been found to be upregulated in lung cancer and also to be associated with poor prognosis. This study aimed to investigate the effect of KLC2 on radiosensitivity in lung cancer. METHODS: The radioresistant role of KLC2 was determined by colony formation, neutral comet assay, and γH2AX immunofluorescent staining assay. We further verified the function of KLC2 in a xenograft tumor model. The downstream of KLC2 was identified through gene set enrichment analysis and validated by western blot. Finally, we analyzed clinical data from the TCGA database to reveal the upstream transcription factor of KLC2, which was validated by RNA binding protein immunoprecipitation assay. RESULTS: Here, we found that downregulation of KLC2 could significantly reduce colony formation, increase γH2AX level, and double-stranded DNA breaks in vitro. Meanwhile, overexpressed KLC2 significantly increased the proportion of the S phase in lung cancer cells. KLC2 knockdown could activate P53 pathway, and ultimately promoting radiosensitivity. The mRNA of KLC2 was observed to bind with Hu-antigen R (HuR). The mRNA and protein expression of KLC2 in lung cancer cells was significantly reduced when combined with siRNA-HuR. Interestingly, KLC2 overexpression significantly increased the expression of HuR in lung cancer cells. CONCLUSION: Taken together, these results indicated that HuR-KLC2 forms a positive feedback loop, which decreases the phosphorylation of p53 and thereby weaken the radiosensitivity of lung cancer cells. Our findings highlight the potential prognosis and therapeutic target value of KLC2 in lung cancer patients treated with radiotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Cinesinas/genética , Cinesinas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , Fosforilação , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/metabolismo
11.
Cell Death Dis ; 14(2): 165, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849492

RESUMO

Chronic inflammation promotes the tumorigenesis and cell stemness maintenance of colorectal cancer (CRC). However, the bridge role of long noncoding RNA (lncRNA) in linking chronic inflammation to CRC development and progression needs better understanding. Here, we elucidated a novel function of lncRNA GMDS-AS1 in persistently activated signal transducer and transcription activator 3 (STAT3) and Wnt signaling and CRC tumorigenesis. Interleukin-6 (IL-6) and Wnt3a induced lncRNA GMDS-AS1 expression, which was highly expressed in the CRC tissues and plasma of CRC patients. GMDS-AS1 knockdown impaired the survival, proliferation and stem cell-like phenotype acquisition of CRC cells in vitro and in vivo. We performed RNA sequencing (RNA-seq) and mass spectrometry (MS) to probe target proteins and identify their contributions to the downstream signaling pathways of GMDS-AS1. In CRC cells, GMDS-AS1 physically interacted with the RNA-stabilizing protein HuR, thereby protecting the HuR protein from polyubiquitination- and proteasome-dependent degradation. HuR stabilized STAT3 mRNA and upregulated the levels of basal and phosphorylated STAT3 protein, persistently activating STAT3 signaling. Our research revealed that the lncRNA GMDS-AS1 and its direct target HuR constitutively activate STAT3/Wnt signaling and promote CRC tumorigenesis, the GMDS-AS1-HuR-STAT3/Wnt axis is a therapeutic, diagnostic and prognostic target in CRC.


Assuntos
Neoplasias Colorretais , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Fatores de Transcrição , Inflamação , Neoplasias Colorretais/genética , Fator de Transcrição STAT3/genética
12.
IEEE Int Conf Healthc Inform ; 2023: 72-80, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38283165

RESUMO

Combination drug therapies are treatment regimens that involve two or more drugs, administered more commonly for patients with cancer, HIV, malaria, or tuberculosis. Currently there are over 350K articles in PubMed that use the combination drug therapy MeSH heading with at least 10K articles published per year over the past two decades. Extracting combination therapies from scientific literature inherently constitutes an n-ary relation extraction problem. Unlike in the general n-ary setting where n is fixed (e.g., drug-gene-mutation relations where n = 3), extracting combination therapies is a special setting where n ≥ 2 is dynamic, depending on each instance. Recently, Tiktinsky et al. (NAACL 2022) introduced a first of its kind dataset, CombDrugExt, for extracting such therapies from literature. Here, we use a sequence-to-sequence style end-to-end extraction method to achieve an F1-Score of 66.7% on the CombDrugExt test set for positive (or effective) combinations. This is an absolute ≈ 5% F1-score improvement even over the prior best relation classification score with spotted drug entities (hence, not end-to-end). Thus our effort introduces a state-of-the-art first model for end-to-end extraction that is already superior to the best prior non end-to-end model for this task. Our model seamlessly extracts all drug entities and relations in a single pass and is highly suitable for dynamic n-ary extraction scenarios.

13.
Cell Death Differ ; 29(6): 1176-1186, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34853447

RESUMO

Tumor necrosis factor-α (TNF) is described as a main regulator of cell survival and apoptosis in multiple types of cells, including hepatocytes. Dysregulation in TNF-induced apoptosis is associated with many autoimmune diseases and various liver diseases. Here, we demonstrated a crucial role of Bcl-3, an IκB family member, in regulating TNF-induced hepatic cell death. Specifically, we found that the presence of Bcl-3 promoted TNF-induced cell death in the liver, while Bcl-3 deficiency protected mice against TNF/D-GalN induced hepatoxicity and lethality. Consistently, Bcl-3-depleted hepatic cells exhibited decreased sensitivity to TNF-induced apoptosis when stimulated with TNF/CHX. Mechanistically, the in vitro results showed that Bcl-3 interacted with the deubiquitinase CYLD to synergistically switch the ubiquitination status of RIP1 and facilitate the formation of death-inducing Complex II. This complex further resulted in activation of the caspase cascade to induce apoptosis. By revealing this novel role of Bcl-3 in regulating TNF-induced hepatic cell death, this study provides a potential therapeutic target for liver diseases caused by TNF-related apoptosis.


Assuntos
Proteína 3 do Linfoma de Células B , Proteínas Ativadoras de GTPase , Hepatócitos , Fator de Necrose Tumoral alfa , Animais , Apoptose/fisiologia , Proteína 3 do Linfoma de Células B/metabolismo , Caspases/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitinação
14.
Biomaterials ; 280: 121323, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942563

RESUMO

A large number of cytokines or growth factors have been used in the treatment of inflammation. However, they are highly dependent on an optimal delivery system with sufficient loading efficiency and protection of growth factors from proteolytic degradation. To develop the immunotherapy capacity of peptide dendrimers themselves, inspired by the structure and immunoregulatory functions of mannose-capped lipoarabinomannan (ManLAM), we thus propose a hypothesis that mannose-decorated globular lysine dendrimers (MGLDs) with precise molecular design can elicit anti-inflammatory activity through targeting and reprogramming macrophages to M2 phenotype. To achieve this, a series of mannose-decorated globular lysine dendrimers (MGLDs) was developed. Size-controlled MGLDs obtained were spherical with positive surface charges. The mean size ranged from 50-200 nm in varying generations and modification degrees. The initial screening study revealed that MGLDs have superior biocompatibility. When cocultured with MGLDs, mouse bone marrow-derived macrophages (BMDMs) acquired an anti-inflammatory M2 phenotype characterized by significant mannose receptor (MR) clustering on the cell surface and the elongated shape, an increased production of transforming growth factor (TGF)-ß1, interleukin (IL)-4 and IL-10, a downregulated secretory of IL-1ß, IL-6, and tumor necrosis factor (TNF)-α, and increased ability to induce fibroblast proliferation. Then in vivo studies further demonstrated that topical administration of optimized MGLDs accelerates wound repair of full-thickness cutaneous defects in type 2 diabetic mice via M2 macrophage polarization. Mechanistically, MGLDs treatment showed an enhanced closure rate, collagen deposition, and angiogenesis, along with mitigated inflammation modulated by a suppressed secretory of pro-inflammation cytokines, and increased production of TGF-ß1. These findings provide the first evidence that the bioinspired design of MGLDs can direct M2 macrophage polarization, which may be beneficial in the therapy of injuries and inflammation.


Assuntos
Dendrímeros , Diabetes Mellitus Experimental , Animais , Dendrímeros/metabolismo , Diabetes Mellitus Experimental/patologia , Lisina , Macrófagos/metabolismo , Manose/metabolismo , Camundongos , Cicatrização
15.
Front Oncol ; 11: 758268, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760704

RESUMO

The mitochondria play a significant role in many cellular processes and are recognized as one of the most important therapeutic targets in cancer. Direct long-term imaging of the mitochondria is very crucial for treating cancer. However, the development of a red-emitting mitochondrial probe with a large Stokes shift and photostability remains highly challenging. Fluorescent metal complexes with superior physicochemical property have emerged as new fluorescent nanomaterials due to their increasing advantages in bioimaging. Herein, a luminescent pitaya-type nanostructure based on rhein-magnesium(II) (Rh-Mg) coordination polymer nanodots was used as a fluorescent nanoprobe to selectively image the mitochondria benefiting from the introduction of triphenylphosphine. The as-prepared Rh-Mg nanodot-based nanoprobe showed red emission peaking at 620 nm, a large Stokes shift (100 nm), and excellent photostability as compared with commercial mitochondrial probes. Due to these extraordinary features, this fluorescent nanoprobe was successfully used for mitochondrial targeting imaging of live cancer cell line Neuro-2a (mouse neuroblastoma) and BV2 microglial cells. Therefore, our results pave a new way for the design of fluorescent nanoprobes for imaging mitochondria in cancer cell.

16.
J Exp Clin Cancer Res ; 40(1): 340, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34706747

RESUMO

BACKGROUND: The zinc transporters Zrt- and Irt-related protein (ZIP/SLC39) are overexpressed in human tumors and correlate with poor prognosis; however, their contributions to carcinogenesis and chemoresistance in osteosarcoma (OS) remain unclear. METHODS: We collected 64 OS patient tissues with (n = 12) or without (n = 52) chemotherapy. The expression levels of ZIP10 were measured by immunohistochemistry and applied to prognostic analysis. ZIP10 was knocked down or overexpressed in OS cell lines to explore its effect on proliferation and chemoresistance. RNA sequencing, quantitative real-time PCR, and western blotting analysis were performed to explore ZIP10-regulated downstream target genes. A xenograft mouse model was established to evaluate the mechanisms by which ZIP10 modulates chemoresistance in OS cells. RESULTS: The expression of ZIP10 was significantly induced by chemotherapy and highly associated with the clinical outcomes of OS. Knockdown of ZIP10 suppressed OS cell proliferation and chemoresistance. In addition, ZIP10 promoted Zn content-induced cAMP-response element binding protein (CREB) phosphorylation and activation, which are required for integrin α10 (ITGA10) transcription and ITGA10-mediated PI3K/AKT pathway activation. Importantly, ITGA10 stimulated PI3K/AKT signaling but not the classical FAK or SRC pathway. Moreover, overexpression of ZIP10 promoted ITGA10 expression and conferred chemoresistance. Treatment with the CREB inhibitor 666-15 or the PI3K/AKT inhibitor GSK690693 impaired tumor chemoresistance in ZIP10-overexpressing cells. Finally, a xenograft mouse model established by subcutaneous injection of 143B cells confirmed that ZIP10 mediates chemotherapy resistance in OS cells via the ZIP10-ITGA10-PI3K/AKT axis. CONCLUSIONS: We demonstrate that ZIP10 drives OS proliferation and chemoresistance through ITGA10-mediated activation of the PI3K/AKT pathway, which might serve as a target for OS treatment.


Assuntos
Proteínas de Transporte de Cátions/genética , Cadeias alfa de Integrinas/metabolismo , Osteossarcoma/genética , Osteossarcoma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Camundongos , Modelos Biológicos , Osteossarcoma/patologia , Fosforilação
17.
iScience ; 24(7): 102791, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34296071

RESUMO

Although angiogenesis-osteogenesis coupling is important in ankylosing spondylitis (AS), therapeutic agents targeting the vasculature remain elusive. Here, we identified activating transcription factor 6 (ATF6) as an important regulator of angiogenesis in the pathogenesis of AS. First, we found that ATF6 and fibroblast growth factor 2 (FGF2) levels were higher in SKG mice and in cartilage of pateints with AS1. The proangiogenic activity of human chondrocytes was enhanced by the activation of the ATF6-FGF2 axis following 7 days of stimulation with inflammatory factors, e.g., tumor necrosis factor alpha (TNF-α), interferon-γ (IFN-γ) or interleukin-17 (IL-17). Mechanistically, ATF6 interacted with the FGF2 promotor and promoted its transcription. Treatment with the ATF6 inhibitor Ceapin-A7 inhibited angiogenesis in vitro and angiogenesis-osteogenesis coupling in vivo. ATF6 may aggravate angiogenesis-osteogenesis coupling during AS by mediating FGF2 transcription in chondrocytes, implying that ATF6 represents a promising therapeutic target for AS.

18.
Environ Res ; 201: 111563, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34171375

RESUMO

An iron-nitrogen-boron-carbon (Fe-N-B-C) bifunctional electrocatalyst was prepared by means of a facile one-step hydrothermal reduction of graphene oxide using dimethylamine borane as doping agent. In addition, hemins were efficiently anchored during doping/reducing process on this modified graphene. The as-prepared Fe-N-B-C electro-catalyst showed enhanced response as regards its potential for reduction of H2O2 and O2. In view of its catalytic activity, this Fe-N-B-C material was tested for the determination of H2O2 with a chronoamperometry method, obtaining a detection limit as low as 0.055 µM, which is better than that of some Hemin-N-C materials. Regarding O2 reduction reaction, a study performed using a rotating disk electrode indicated that this material exhibits a positive onset potential (0.90V vs. RHE), high selectivity (4e- process), high limiting-current density (4.75 mA cm-2) and strong resistance against the crossover-effect from methanol in alkaline medium, making it to be the promising candidate as alternative for commercial Pt/C catalysts. These results could have commercial and environmental relevance and would deserve further complementary investigation.


Assuntos
Carbono , Nitrogênio , Boro , Peróxido de Hidrogênio , Ferro , Oxigênio
19.
Nat Biomed Eng ; 5(9): 1048-1058, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34045730

RESUMO

In patients with glioblastoma, resistance to the chemotherapeutic temozolomide (TMZ) limits any survival benefits conferred by the drug. Here we show that the convection-enhanced delivery of nanoparticles containing disulfide bonds (which are cleaved in the reductive environment of the tumour) and encapsulating an oxaliplatin prodrug and a cationic DNA intercalator inhibit the growth of TMZ-resistant cells from patient-derived xenografts, and hinder the progression of TMZ-resistant human glioblastoma tumours in mice without causing any detectable toxicity. Genome-wide RNA profiling and metabolomic analyses of a glioma cell line treated with the cationic intercalator or with TMZ showed substantial differences in the signalling and metabolic pathways altered by each drug. Our findings suggest that the combination of anticancer drugs with distinct mechanisms of action with selective drug release and convection-enhanced delivery may represent a translational strategy for the treatment of TMZ-resistant gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Nanopartículas , Animais , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Convecção , DNA , Glioma/tratamento farmacológico , Humanos , Substâncias Intercalantes , Camundongos , Temozolomida , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA