Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Dent Sci ; 19(1): 231-245, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303843

RESUMO

Background/purpose: Nicotine is a widely known addictive and toxic substance in cigarette that exacerbates periodontitis. However, its deleterious effects on dental stem cells and subsequent implications in tissue regeneration remain unclear. This study aimed to explore the effects of nicotine on the regenerative capacity of human periodontal ligament stem cells (hPDLSCs) based on transcriptomics and proteomics, and determined possible targeted genes associated with smoking-related periodontitis. Materials and methods: hPDLSCs were treated with different concentrations of nicotine ranging from 10-3 to 10-8 M. Transcriptomics and proteomics were performed and confirmed employing Western blot, 5-ethynyl-2'-deoxyuridine (EdU), and alkaline phosphatase (ALP) staining. A ligature-induced periodontitis mouse model was established and administrated with nicotine (16.2 µg/10 µL) via gingival sulcus. The bone resorption was assessed by micro-computed tomography and histological staining. Key genes were identified using multi-omics analysis with verifications in hPDLSCs and human periodontal tissues. Results: Based on enrichments analysis, nicotine-treated hPDLSCs exhibited decreased proliferation and differentiation abilities. Local administration of nicotine in mouse model significantly aggravated bone resorption and undermined periodontal tissue regeneration by inhibiting the endogenous dental stem cells regenerative ability. HMGCS1, GPNMB, and CHRNA7 were hub-genes according to the network analysis and corelated with proliferation and differentiation capabilities, which were also verified in both cells and tissues. Conclusion: Our study investigated the destructive effects of nicotine on the regeneration of periodontal tissues from aspects of in vitro and in vivo with the supporting information from both transcriptome and proteome, providing novel targets into the molecular mechanisms of smoking-related periodontitis.

2.
Transl Oncol ; 37: 101756, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37595394

RESUMO

Glioma is the most common tumor of the nervous system. The diffuse growth and proliferation of glioma poses great challenges for its treatment. Here, Transcriptomic analysis revealed that Rac GTPase activating protein 1 (RACGAP1) is highly expressed in glioma. RACGAP1 has been shown to play an important role in the malignant biological progression of a variety of tumors. However, the underlying role and mechanism in glioma remain poorly understood. By using quantitative real-time polymerase chain reaction (qRT-PCR), western blot, immunohistochemistry and Orthotopic mouse xenografts, we confirmed that knockdown of RACGAP1 impeded cell proliferation in glioma and prolonged the survival of orthotopic mice. Interestingly, we also found that inhibiting the expression of RACGAP1 reduced the expression of minichromosome maintenance 3 (MCM3) through RNA-seq and rescue assay, while Yin Yang 1 (YY1) transcriptionally regulated RACGAP1 expression. Furthermore, T7 peptide-decorated exosome (T7-exo) is regard as a promising delivery modality for targeted therapy of glioma, and the T7-siRACGAP1-exo significantly improved the survival time of glioma bearing mice. These results suggested that targeting RACGAP1 may be a potential strategy for glioma therapy.

3.
J Periodontal Res ; 58(1): 70-82, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36346119

RESUMO

BACKGROUND AND OBJECTIVES: Periodontitis is the top reason for tooth loss, and smoking significantly increases severe periodontitis risk. Defective autophagy has been reported to play a vital role in periodontitis. This study aimed to elucidate the relationship between autophagy and inflammation factors production in nicotine-treated periodontal ligament stem cells (PDLSCs) and the underlying mechanism. METHODS: In this study, transmission electron microscopy, immunofluorescence, and the mCherry-GFP-LC3 plasmid were used to study autophagy flux. The gene levels of inflammation factors and long noncoding RNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1) were detected by quantitative real-time PCR (qRT-PCR). Western blot was performed to assess the protein levels of autophagic markers and α7 nicotinic acetylcholine receptor (α7nAChR). RESULTS: We found that nicotine impaired autophagosome-lysosome fusion and lysosome functions to block autophagy flux, contributing to inflammatory factors production in nicotine-treated PDLSCs. Moreover, nicotine upregulated NEAT1 by activating α7nAChR. NEAT1 decreased autophagy flux by downregulating syntaxin 17 (STX17). CONCLUSION: Our data indicate that NEAT1-decreased autophagy flux is pivotal for inflammation factors production in nicotine-treated PDLSCs.


Assuntos
Periodontite , RNA Longo não Codificante , Humanos , Receptor Nicotínico de Acetilcolina alfa7/genética , Autofagia/genética , Células Cultivadas , Inflamação/metabolismo , Nicotina/farmacologia , Nicotina/metabolismo , Ligamento Periodontal/metabolismo , Periodontite/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células-Tronco/metabolismo
4.
Front Pharmacol ; 13: 975291, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059990

RESUMO

Glioblastoma (GBM) is the most malignant tumor of the central nervous system in adults. Irradiation (IR) and temozolomide (TMZ) play an extremely important role in the treatment of GBM. However, major impediments to effective treatment are postoperative tumor recurrence and acquired resistance to chemoradiotherapy. Our previous studies confirm that Yin Yang 1 (YY1) is highly expressed in GBM, whereby it is associated with cell dedifferentiation, survival, and therapeutic resistance. Targeted delivery of small interfering RNA (siRNA) without blood-brain barrier (BBB) restriction for eradication of GBM represents a promising approach for therapeutic interventions. In this study, we utilize the engineering technology to generate T7 peptide-decorated exosome (T7-exo). T7 is a peptide specifically binding to the transferrin receptor. T7-exo shows excellent packaging and protection of cholesterol-modified Cy3-siYY1 while quickly releasing payloads in a cytoplasmic reductive environment. The engineered exosomes T7-siYY1-exo could deliver more effciently to GBM cells both in vitro and in vivo. Notably, in vitro experiments demonstrate that T7-siYY1-exo can enhance chemoradiotherapy sensitivity and reverse therapeutic resistance. Moreover, T7-siYY1-exo and TMZ/IR exert synergistic anti-GBM effect and significantly improves the survival time of GBM bearing mice. Our findings indicate that T7-siYY1-exo may be a potential approach to reverse the chemoradiotherapy resistance in GBM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA