Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Aging (Albany NY) ; 162024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103205

RESUMO

Osteosarcoma is a highly metastatic, aggressive bone cancer that occurs in children and young adults worldwide. Circular RNAs (circRNAs) are crucial molecules for osteosarcoma progression. In this study, we aimed to investigate the impact of circMRPS35 overexpression and its interaction with FOXO1 via evaluating apoptosis, cell cycle, and bioinformatic analyses on the malignant development of osteosarcoma in MG63 and MNNG/HOS cells. We found that circMRPS35 overexpression reduced osteosarcoma cell viability and inhibited tumor growth in vivo. It increased the apoptosis rate and induced cell cycle arrest in osteosarcoma cells. We identified a potential interaction between circMRPS35 and FOXO1 with miR-105-5p using bioinformatics analysis. Overexpression of circMRPS35 decreased miR-105-5p expression, whereas miR-105-5p mimic treatment increased its expression. This mimic also suppressed the luciferase activity of circMRPS35 and FOXO1 and reduced FOXO1 expression. Overexpression of circMRPS35 elevated FOXO1 protein levels, but this effect was reversed by co-treatment with the miR-105-5p mimic. We demonstrated that inhibiting miR-105-5p decreased viability and induced apoptosis. Overexpression of FOXO1 or treatment with a miR-105-5p inhibitor could counteract the effects of circMRPS35 on viability and apoptosis in osteosarcoma cells. Therefore, we concluded that circMRPS35 suppressed the malignant progression of osteosarcoma via targeting the miR-105-5p/FOXO1 axis.

2.
Comput Biol Med ; 177: 108574, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772102

RESUMO

The immune dysregulation associated with carbapenem-resistant Klebsiella pneumoniae (CRKP) severity was investigated through single-cell RNA sequencing (scRNA-seq) of 5 peripheral blood samples from 3 patients with moderate and severe CRKP pneumonia. Additionally, scRNA-seq datasets from two individuals with COVID-19 were included for comparative analysis. The dynamic characterization and functional properties of each immune cell type were examined by delineating the transcriptional profiles of immune cells throughout the transition from moderate to severe conditions. Overall, most immune cells in CRKP patients exhibited a robust interferon-α response and inflammatory reaction compared to healthy controls, mirroring observations in COVID-19 patients. Furthermore, cell signatures associated with NK cells, macrophages, and monocytes were identified in CRKP progression including PTPRCAP for NK cells, C1QB for macrophages, and S100A12 for both macrophages and monocytes. In summary, this study offers a comprehensive scRNA-seq resource for illustrating the dynamic immune response patterns during CRKP progression, thereby shedding light on the associations between CRKP and COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Análise de Célula Única , Humanos , COVID-19/imunologia , SARS-CoV-2/imunologia , Masculino , Klebsiella pneumoniae/imunologia , Infecções por Klebsiella/imunologia , Feminino , Pessoa de Meia-Idade , Pneumonia Bacteriana/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Idoso
3.
Int Immunopharmacol ; 135: 112271, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38762923

RESUMO

The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signal has drawn much consideration due to its sensitivity to DNA in innate immune mechanisms. Activation of the cGAS-STIN signaling pathway induces the production of interferon and inflammatory cytokines, resulting in immune responses, or inflammatory diseases. The intestinal tract is a vital organ for the body's nutrition absorption, recent studies have had various points of view on the job of cGAS-STING pathway in various intestinal sicknesses. Therefore, understanding its role and mechanism in the intestinal environment can help to develop new strategies for the treatment of intestinal diseases. This article examines the mechanism of the cGAS-STING pathway and its function in inflammatory bowel disease, intestinal cancer, and long-injury ischemia-reperfusion, lists the current medications that target it for the treatment of intestinal diseases, and discusses the impact of intestinal flora on this signaling pathway, to offer a theoretical and scientific foundation for upcoming targeted therapies for intestinal disorders via the cGAS-STING pathway.


Assuntos
Enteropatias , Proteínas de Membrana , Nucleotidiltransferases , Transdução de Sinais , Animais , Humanos , Imunidade Inata , Enteropatias/imunologia , Enteropatias/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo
4.
Br J Pharmacol ; 181(15): 2509-2527, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38589338

RESUMO

BACKGROUND AND PURPOSE: It is well acknowledged that tobacco-derived lung carcinogens can induce lung injury and even lung cancer through a complex mechanism. MicroRNAs (MiRNAs) are differentially expressed in tobacco-derived carcinogen nicotine-derived nitrosamine ketone (NNK)-treated A/J mice. EXPERIMENTAL APPROACH: RNA sequencing was used to detect the level of long non-coding RNAs (lncRNAs). Murine and human lung normal and cancer cells were used to evaluate the function of lncRNA XIST and miR-328-3p in vitro, and NNK-treated A/J mice were used to test their function in vivo. In vivo levels of miR-328-3p and lncRNA XIST were analysed, using in situ hybridization. miR-328-3p agomir and lncRNA XIST-specific siRNA were used to manipulate in vivo levels of miR-328-3p and lncRNA XIST in A/J mice. KEY RESULTS: LncRNA XIST was up-regulated in NNK-induced lung injury and dominated the NNK-induced ectopic miRNA expression in NNK-induced lung injury both in vitro and in vivo. Either lncRNA XIST silencing or miR-328-3p overexpression exerted opposing effects in lung normal and cancer cells regarding cell migration. LncRNA XIST down-regulated miR-328-3p levels as a miRNA sponge, and miR-328-3p targeted the 3'-UTR of FZD7 mRNA, which is ectopically overexpressed in lung cancer patients. Both in vivo lncRNA XIST silencing and miR-328 overexpression could rescue NNK-induced lung injury and aberrant overexpression of the lung cancer biomarker CK19 in NNK-treated A/J mice. CONCLUSIONS AND IMPLICATIONS: Our results highlight the promotive effect of lncRNA XIST in NNK-induced lung injury and elucidate its post-transcriptional mechanisms, indicating that targeting lncRNA XIST/miR-328-3p could be a potential therapeutic strategy to prevent tobacco carcinogen-induced lung injury in vivo.


Assuntos
Carcinógenos , MicroRNAs , Nitrosaminas , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Nitrosaminas/toxicidade , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos , Humanos , Carcinógenos/toxicidade , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/genética , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Nicotiana
5.
Sci Total Environ ; 917: 170421, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38286291

RESUMO

Leachate comprising organic contaminants such as dichloromethane is frequently discharged into groundwater at contaminated sites and unlined landfills. Soil-bentonite backfills in vertical cutoff walls are extensively employed to contain the flow of contaminated groundwater, thereby safeguarding the downstream groundwater environmental quality and ecosystem. This study presented a comprehensive evaluation of effects of dichloromethane-impacted groundwater on hydraulic conductivity and microscopic characteristics of soil-bentonite backfills amended with polymer namely polyanionic cellulose and microscale zero-valent iron. The results showed the amended backfills exhibited lower hydraulic conductivity than the unamended backfill regardless of the permeant type, i.e., tap water and dichloromethane solution. Scanning electron microscopy coupled with energy-dispersive spectrometry analyses demonstrated that polyanionic cellulose hydrogel could effectively coat sand, bentonite, and microscale zero-valent iron particles, providing protection of bentonite particles against attacks imposed by the dichloromethane and multivalent iron ions, and diminish aggregation of microscale zero-valent iron particles in the amended backfills. X-ray diffraction results indicated there was no intercalation of polyanionic cellulose and microscale zero-valent iron into the montmorillonite platelets of bentonite particles. Based on the Fourier Transform Infrared Spectroscopy Spectra analysis, a new functional group (-CH2) was identified on the polyanionic cellulose amended bentonite particles. The results demonstrated that amendment with polyanionic cellulose and microscale zero-valent iron is a promising approach to improve the performance of soil-bentonite backfills in containing flow of dichloromethane-impacted groundwater.

6.
J Obstet Gynaecol Res ; 50(1): 95-102, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37857487

RESUMO

OBJECTIVE: To investigate the relationship between Human telomerase reverse transcriptase (hTERT) gene polymorphisms and the susceptibility and clinicopathological parameters of cervical cancer in women infected with high-risk human papillomavirus (HR-HPV). METHOD: A total of 380 patients with HPV-infected cervical cancer who were admitted to the Jilin province Maternal and Child Health Care Hospital (Jilin province Obstetrics Quality Control Center) from July 2019 to July 2023 were selected as case group, and 408 women with negative HPV results in the cervical cancer screening results of the physical examination in the same hospital were selected as the control group. Restriction fragment length polymorphisms polymerase chain reaction was used to detect the polymorphisms of hTERT, and its relationship with the susceptibility to high-risk HPV infection and clinicopathological parameters in patients with cervical cancer was analysed. RESULTS: Individuals carrying the GA and AA genotypes of rs2736122 were significantly associated with an increased risk of cervical cancer when compared with the GG genotype and the adjusted ORs were 0.53 (0.37-0.79) for the AA genotype and 0.73 (0.59-0.88) for the A allele genotype. Besides, GG genotype or G allele of rs2853677 presented a significant influence on cervical cancer, with ORs of 0.59 (0.41-0.86) and 10.77 (0.63-0.94), respectively, when compared with the AA genotype. And rs2853677 have statistically significant difference in tumour diameter and degree of differentiation subgroup(p < 0.05). CONCLUSION: The results of this study indicate that the hTERT gene rs2736122AA and rs2853677 GG genotypes can increase the susceptibility of high-risk HPV infection in cervical cancer patients. And rs2853677 is related to tumours above 4 cm and highly differentiated tumours. But both have nothing to do with the patient's chemotherapy sensitivity.


Assuntos
Infecções por Papillomavirus , Telomerase , Neoplasias do Colo do Útero , Criança , Feminino , Humanos , Estudos de Casos e Controles , Detecção Precoce de Câncer , Predisposição Genética para Doença , Genótipo , Papillomavirus Humano , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/diagnóstico , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Telomerase/genética , Telomerase/metabolismo , Neoplasias do Colo do Útero/patologia
7.
Cancers (Basel) ; 15(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38001575

RESUMO

The metastasis of tumor cells into vital organs is a major cause of death from diverse types of malignancies [...].

8.
Cell Div ; 18(1): 19, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37907950

RESUMO

Angelica acutiloba Kitagawa, a traditional medicinal herb of the Umbelliferae family, has been demonstrated to have anticancer activity. In this study, we investigated the anti-lung cancer effects of two compounds extracted from A. acutiloba flowers: kaempferol-3-O-α-L-(4″-E-p-coumaroyl)-rhamnoside (KAE) and platanoside (PLA). MTT, cell colony formation, and cell migration (scratch) assays revealed that both KAE (100 µM) and PLA (50 µM and 100 µM) inhibited the viability, proliferation, and migration of A549 cells. Dichlorodihydrofluorescein diacetate assays showed that KAE and PLA also induced the generation of reactive oxygen species in A549 cells. Morphologically, A549 cells swelled and grew larger under treatment with KAE and PLA, with the most significant changes at 100 µM PLA. Fluorescence staining and measurement of lactate dehydrogenase release showed that the cells underwent pyroptosis with concomitant upregulation of interleukin (IL)-1ß and IL-18. Furthermore, both KAE and PLA induced upregulation of NF-κB, PARP, NLRP3, ASC, cleaved-caspase-1, and GSDMD expression in A549 cells. Subsequent investigations unveiled that these compounds interact with NLRP3, augment NLRP3's binding affinity with ASC, and stimulate the assembly of the inflammasome, thereby inducing pyroptosis. In conclusion, KAE and PLA, two active components of A. acutiloba flower extract, had significant anti-lung cancer activities exerted through regulation of proteins related to the NLRP3 inflammasome pathway.

9.
Acc Chem Res ; 56(21): 2980-2991, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37851547

RESUMO

Since the discovery of the first chemically modified RNA nucleotide in 1951, more than 170 types of chemical modifications have been characterized in RNA so far. Since the discovery of the reversible and dynamic nature of N6-methyladenosine (m6A) in mRNA modification, researchers have identified about ten modifications in eukaryotic mRNA; together with modifications on the noncoding RNAs, the term "epitranscriptome" has been coined to describe the ensemble of various chemical RNA modifications. The past decade has witnessed the discovery of many novel molecular functions of mRNA modifications, demonstrating their crucial roles in gene expression regulation. As the most abundant modifications in mRNA, the study of m6A and Ψ has been facilitated by innovative high-throughput sequencing technologies, which can be based on antibodies, enzymes, or novel chemistry. Among them, chemical-assisted methods utilize selective chemistry that can discriminate modified versus unmodified nucleotides, enabling the transcriptome-wide mapping of m6A and Ψ modifications and functional studies.Our group has developed several sequencing technologies to investigate these epitranscriptomic marks including m6A, Ψ, m1A, and m6Am. Among them, we have recently developed two methods for absolute quantification of m6A and Ψ in the transcriptome based on chemical reactivity to distinguish and measure the two modifications. In GLORI, we used glyoxal and nitrite to mediate efficient deamination of regular adenosine, while m6A remained unaffected, thereby enabling efficient and unbiased detection of single-base resolution and absolute quantification of m6A modification. In CeU-seq and PRAISE, we used different chemistry to achieve selective labeling and detection of transcriptome-wide Ψ. CeU-seq is based on an azido-derivatized carbodiimide compound, while PRAISE utilizes the unique activity of bisulfite to Ψ. PRAISE results in the formation of ring-opening Ψ-bisulfite adduct and quantitatively detects Ψ as 1-2 nt deletion signatures during sequencing. The resulting base-resolution and stoichiometric information expanded our understanding to the profiles of RNA modifications in the transcriptome. In particular, the quantitative information on RNA methylome is critical for characterizing the dynamic and reversible nature of RNA modifications, for instance, under environmental stress or during development. Additionally, base-resolution and stoichiometric information can greatly facilitate the analysis and characterization of functional modification sites that are important for gene expression regulation, especially when one modification type may have multiple or even opposing functions within a specific transcript. Together, the quantitative profiling methods provide the modification stoichiometry information, which is critical to study the regulatory roles of RNA modifications.In this Account, we will focus on the quantitative sequencing technologies of m6A and Ψ developed in our group, review recent advances in chemical-assisted reactions for m6A and Ψ detection, and discuss the challenges and future opportunities of transcriptome-wide mapping technologies for RNA modifications.


Assuntos
RNA , Transcriptoma , RNA/química , Sulfitos , RNA Mensageiro , Processamento Pós-Transcricional do RNA
10.
Exp Biol Med (Maywood) ; 248(18): 1566-1578, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37873701

RESUMO

Myocardial ischemia-reperfusion (I/R), an important complication of reperfusion therapy for myocardial infarction, is characterized by hyperactive oxidative stress and inflammatory response. Leonurine (4-guanidino-n-butyl syringate, SCM-198), an alkaloid extracted from Herbaleonuri, was previously found to be highly cardioprotective both in vitro and in vivo. Our current study aimed to investigate the effect of SCM-198 preconditioning on myocardial I/R injury in vitro and in vivo, respectively, as well as to decipher the mechanism involved. Rats were pretreated with SCM-198 before subjected to 45 min of myocardial ischemia, which was followed by 24 h of reperfusion. Primary neonatal rat cardiac ventricular myocytes (NRCMs) were exposed to hypoxia (95% N2 + 5% CO2) for 12 h, and then to 12 h reoxygenation so as to mimic I/R. The enzymatic measurements demonstrated that SCM-198 reduced the release of infarction-related enzymes, and the hemodynamic and echocardiography measurements showed that SCM-198 restored cardiac functions, which suggested that SCM-198 could significantly reduce infarct size, maintaining cardiomyocyte morphology, and that SCM-198 pretreatment could significantly reduce cardiomyocytes apoptosis. Moreover, we demonstrated that SCM-198 could exert a cardioprotective effect by reducing reactive oxygen species (ROS) level and Akt phosphorylation while reducing the phosphorylation of p38 and JNK. In addition, the upregulation of p-Akt, Bcl-2/Bax induced by SCM-198 treatment were blocked by PI3K inhibitor LY294002, and the total protein level of Akt was not affected by SCM-198 pretreatment. Our experimental results indicated that SCM-198 could have a cardioprotective effect on I/R injury, which confirmed the utility of SCM-198 preconditioning as a strategy to prevent I/R injury.


Assuntos
Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Ratos Sprague-Dawley , Miócitos Cardíacos/metabolismo , Isquemia Miocárdica/metabolismo , Apoptose
11.
Nat Commun ; 14(1): 4313, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463901

RESUMO

Metastatic breast-cancer is a major cause of death in women worldwide, yet the relationship between oncogenic drivers that promote metastatic versus primary cancer is still contentious. To elucidate this relationship in treatment-naive animals, we hereby describe mammary-specific transposon-mutagenesis screens in female mice together with loss-of-function Rb, which is frequently inactivated in breast-cancer. We report gene-centric common insertion-sites (gCIS) that are enriched in primary-tumors, in metastases or shared by both compartments. Shared-gCIS comprise a major MET-RAS network, whereas metastasis-gCIS form three additional hubs: Rho-signaling, Ubiquitination and RNA-processing. Pathway analysis of four clinical cohorts with paired primary-tumors and metastases reveals similar organization in human breast-cancer with subtype-specific shared-drivers (e.g. RB1-loss, TP53-loss, high MET, RAS, ER), primary-enriched (EGFR, TGFß and STAT3) and metastasis-enriched (RHO, PI3K) oncogenic signaling. Inhibitors of RB1-deficiency or MET plus RHO-signaling cooperate to block cell migration and drive tumor cell-death. Thus, targeting shared- and metastasis- but not primary-enriched derivers offers a rational avenue to prevent metastatic breast-cancer.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Animais , Camundongos , Neoplasias da Mama/patologia , Transdução de Sinais , Metástase Neoplásica
12.
Am J Orthod Dentofacial Orthop ; 162(6): e277-e294, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36202698

RESUMO

INTRODUCTION: Matching the maxillomandibular basal bone width is essential to the stability of orthodontic treatment. We aimed to determine the relationship between basal bone width mismatching and the vertical and sagittal skeletal pattern in patients with skeletal Class III malocclusion through shape analysis and structural equation modeling (SEM). METHODS: Cone-beam computed tomography images were collected from 45 men and 51 women. Width mismatching of the basal bone was determined using generalized Procrustes analysis. Twenty-two parameters from the synthesized cephalogram were measured, followed by factor analysis and SEM. RESULTS: Mismatch occurred at the second molar (men, -4.29 ± 4.32 mm; women, -5.55 ± 4.43 mm) and retromolar regions (men, -8.49 ± 5.11 mm; women: -8.93 ± 5.25 mm). The sum of angles had the largest loading for vertical-1 (extracted from 18 vertical cephalometric measurements) (men, 0.9477; women, 0.9489), followed by MP-SN angle (0.9408) in men and N-Me/S-Go (0.9342) in women. Wits appraisal and anteroposterior dysplasia indicator were largest for Sagittal-1. SEM showed a positive effect of male vertical-1 and 2 on width difference in the retromolar region (P <0.001; B >0). Female vertical-1 had a significant positive effect on DW7 (P <0.001; B = 5.535) and DWR (P = 0.016; B = 3.427) as vertical-2. Sagittal-1 showed a negative correlation with DW7 in both genders (P <0.05; B <0) and with DWR in men. CONCLUSIONS: Basal bone width mismatching occurred at the second molar and retromolar regions, especially in low-angle and patients with severe skeletal Class III malocclusion.


Assuntos
Má Oclusão Classe III de Angle , Mandíbula , Humanos , Feminino , Masculino , Mandíbula/diagnóstico por imagem , Maxila/diagnóstico por imagem , Análise de Classes Latentes , Má Oclusão Classe III de Angle/diagnóstico por imagem , Cefalometria/métodos
13.
J Biophotonics ; 15(10): e202200079, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35771360

RESUMO

Neoadjuvant therapy has become a standard treatment for patients with locally advanced rectal cancer to achieve better prognostic outcomes. The response to treatment has been shown to correlate closely with the prognosis. However, current evaluation systems only provide coarse assessment on limited information, due to the lack of accurate and reproducible approach for quantitation of different types of responses. In this study, a novel stain-free, slide-free multimodal multiphoton microscopy imaging technique was applied to image rectal cancer tissues after neoadjuvant therapies with high resolution and contrast. Qualitative and quantitative evaluation of tumor, stromal, and inflammatory responses were demonstrated which are consistent with current tumor regression grading system using American Joint Committee on Cancer criteria, showing the great potential of such approach to build a more informative grading system for accurate and standardizable assessment of neoadjuvant therapy in rectal cancer.


Assuntos
Terapia Neoadjuvante , Neoplasias Retais , Corantes , Humanos , Microscopia , Estadiamento de Neoplasias , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/patologia , Neoplasias Retais/terapia , Reto , Resultado do Tratamento
14.
Cell Cycle ; 21(19): 2065-2078, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35670736

RESUMO

SAMHD1 was reported to be related with the development of tumors, while its function in gastric cancer (GC) has not been elucidated yet. Here, we investigated the role and mechanism of SAMHD1 in regulating the proliferation of GC, as well as the mechanism of its expression regulation. Our results revealed that SAMHD1 was downregulated in GC tissues and cell lines, which was correlated with tumor size, depth of invasion and TNM stage. Overexpression of SAMHD1 inhibited the proliferation, clone formation, DNA synthesis and cell cycle progression, while knockdown of SAMHD1 promoted the proliferation of GC cells in vitro and vivo. Meanwhile, SAMHD1 inhibited the activation of MAPK p38 signaling pathway. Moreover, SB203580, as a MAPK p38 inhibitor, could reverse the proliferation and activation of MAPK p38 signaling pathway caused by knockdown of SAMHD1 in GC cells. Additionally, transcription factor Krüppel-like factor 4 (KLF4) bound to the core promoter of SAMHD1, increasing its transcriptional expression in GC cells. In conclusion, SAMHD1 suppressed the proliferation of GC through negatively regulating the activation of MAPK p38 signaling pathway and was upregulated by KLF4 in GC cells.


Assuntos
Fator 4 Semelhante a Kruppel , Proteína 1 com Domínio SAM e Domínio HD , Neoplasias Gástricas , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Fator 4 Semelhante a Kruppel/genética , Proteína 1 com Domínio SAM e Domínio HD/genética , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
15.
Anticancer Drugs ; 33(7): 607-613, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35503036

RESUMO

Osteosarcoma serves as frequently occurred bone malignancy that displays low survival rate and high incidence of metastasis. Circular RNAs (circRNAs) have been reported as the crucial molecules in osteosarcoma development. However, the effect of circRNA circMRPS35 on osteosarcoma remains unclear. Here, we aimed to explore the function of circMRPS35 in the regulation of autophagy and progression of osteosarcoma. The colony formation numbers and Edu-positive osteosarcoma cells were repressed by the overexpression of circMRPS35. Meanwhile, the overexpression of circMRPS35 increased the apoptosis rate of osteosarcoma cells. The expression levels of autophagy markers, including LC3 and Beclin1, were enhanced by the overexpression of circMRPS35 in osteosarcoma cells. Mechanically, the depletion of circMRPS35 reduced the enrichment of histone H3 lysine 23 acetylation (H3K23ac) on forkhead box O3 (FOXO3) promoter in osteosarcoma cells. The interaction of circMRPS35 and KAT6B was identified. The knockdown of KAT6B reduced the enrichment of H3K23ac on FOXO3 promoter in osteosarcoma cells. The depletion of circMRPS35 repressed the expression of FOXO3 in the MG63 and MNNG/HOS cells, whereas the overexpression of KAT6B reversed the effect. Significantly, KAT6B promotes apoptosis and autophagy of osteosarcoma cells. The overexpression of circMRPS35 induced the apoptosis and autophagy of osteosarcoma cells, in which the depletion of KAT6B or FOXO3 reversed the effect. The overexpression of circMRPS35 inhibited the tumor growth in vivo , whereas the depletion of KAT6B could reverse the effect in the mice. Therefore, we concluded that circRNA circMRPS35 repressed progression and induced autophagy of osteosarcoma cells.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Animais , Apoptose/genética , Autofagia , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Camundongos , Osteossarcoma/genética , Osteossarcoma/patologia , RNA Circular/genética
16.
Front Immunol ; 13: 796606, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464409

RESUMO

Tumor stemness has been reported to play important roles in cancers. However, a comprehensive analysis of tumor stemness remains to be performed to investigate the specific mechanisms and practical values of stemness in soft tissue sarcomas (STS). Here, we applied machine learning to muti-omic data of patients from TCGA-SARC and GSE21050 cohorts to reveal important roles of stemness in STS. We demonstrated limited roles of existing mRNAsi in clinical application. Therefore, based on stemness-related signatures (SRSs), we identified three stemness subtypes with distinct stemness, immune, and metabolic characteristics using consensus clustering. The low-stemness subtype had better prognosis, activated innate and adaptive immunity (e.g., infiltrating B, DC, Th1, CD8+ T, activated NK, gamma delta T cells, and M1 macrophages), more enrichment of metabolic pathways, more sites with higher methylation level, higher gene mutations, CNA burdens, and immunogenicity indicators. Furthermore, the 16 SRS-based stemness prognostic index (SPi) was developed, and we found that low-SPi patients with low stemness had better prognosis and other characteristics similar to those in the low-stemness subtype. Besides, low-stemness subtype and low-SPi patients could benefit from immunotherapy. The predictive value of SPi in immunotherapy was more accurate after the addition of MSI into SPi. MSIlowSPilow patients might be more sensitive to immunotherapy. In conclusion, we highlighted mechanisms and practical values of the stemness in STS. We also recommended the combination of MSI and SPi which is a promising tool to predict prognosis and achieve precise treatments of immunotherapy in STS.


Assuntos
Imunoterapia , Sarcoma , Humanos , Aprendizado de Máquina , Prognóstico , Sarcoma/terapia
17.
J Asian Nat Prod Res ; 24(8): 746-753, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35137660

RESUMO

Two new stilbene glucosides, trans-3,5-dihydroxy-4-methoxystilbene 3-O-ß-D-glucopyranoside (1), cis-3,5-dihydroxy-4-methoxystilbene 3-O-ß-D-glucopyranoside (2), one new benzoic acid derivative, cis-4-hydroxy-3-hydroxymethyl-2-butenyl benzoate 4-O-ß-D-glucopyranoside (3), and four known compounds (4 - 7) were isolated from Tournefortia sibirica L. The structures of these compounds were elucidated on the basis of spectral data. Anti-inflammatory effects of compounds (1 - 7) were evaluated in terms of inhibition on production of NO, TNF-α and IL-6 in LPS-induced RAW 264.7 cells. Compounds 1, 2 and 5 - 7 could inhibit the levels of NO, TNF-α and IL-6 in LPS-induced RAW264.7 cells with IC50 values ranging from 40.96 to 88.76 µM.


Assuntos
Boraginaceae , Estilbenos , Ácido Benzoico/farmacologia , Glucosídeos/química , Glucosídeos/farmacologia , Interleucina-6 , Lipopolissacarídeos/farmacologia , Estrutura Molecular , Estilbenos/química , Estilbenos/farmacologia , Fator de Necrose Tumoral alfa
18.
EMBO J ; 41(4): e106825, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35023164

RESUMO

Despite extensive analysis of pRB phosphorylation in vitro, how this modification influences development and homeostasis in vivo is unclear. Here, we show that homozygous Rb∆K4 and Rb∆K7 knock-in mice, in which either four or all seven phosphorylation sites in the C-terminal region of pRb, respectively, have been abolished by Ser/Thr-to-Ala substitutions, undergo normal embryogenesis and early development, notwithstanding suppressed phosphorylation of additional upstream sites. Whereas Rb∆K4 mice exhibit telomere attrition but no other abnormalities, Rb∆K7 mice are smaller and display additional hallmarks of premature aging including infertility, kyphosis, and diabetes, indicating an accumulative effect of blocking pRb phosphorylation. Diabetes in Rb∆K7 mice is insulin-sensitive and associated with failure of quiescent pancreatic ß-cells to re-enter the cell cycle in response to mitogens, resulting in induction of DNA damage response (DDR), senescence-associated secretory phenotype (SASP), and reduced pancreatic islet mass and circulating insulin level. Pre-treatment with the epigenetic regulator vitamin C reduces DDR, increases cell cycle re-entry, improves islet morphology, and attenuates diabetes. These results have direct implications for cell cycle regulation, CDK-inhibitor therapeutics, diabetes, and longevity.


Assuntos
Envelhecimento/fisiologia , Ácido Ascórbico/farmacologia , Diabetes Mellitus Experimental/prevenção & controle , Proteína do Retinoblastoma/metabolismo , Animais , Senescência Celular/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Fator de Transcrição E2F1/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Fibroblastos/efeitos dos fármacos , Técnicas de Introdução de Genes , Células Secretoras de Insulina/patologia , Camundongos , Fosforilação , Gravidez , Proteína do Retinoblastoma/genética , Telômero/genética
19.
Biochem Genet ; 60(1): 223-240, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34169384

RESUMO

This study combined with bioinformatics analysis and investigated the expression pattern of miR-181b-5p, as well as explored its role and mechanism in cholangiocarcinoma (CCA or CHOL). Several bioinformatics databases were used to analyze the expression of miR-181b and the enrichment of miR-181b in biological activities and biological pathways in CCA. The RT-qPCR analysis was used to examine the expression levels of miR-181b-5p. A receiver operation characteristics (ROC) curve analysis and the Kaplan-Meier survival assay were conducted to validate the diagnostic and prognostic implication of miR-181b-5p. Cell experiments were used to explore the possible functional role of miR-181b-5p in CCA progression. The bioinformatics assay was used to predict the target gene of miR-181b-5p and Western blot was used to confirm the related signaling pathway. The bioinformatics analysis results suggest that miR-181b-5p was highly expressed in cholangiocarcinoma and its expression was negatively related to PARK2 expression in CCA tissues. miR-181b-5p expression in the serum and tissues was upregulated and associated with lymph node metastasis and TNM stage. Increased expression of miR-181b-5p had relatively high diagnostic accuracy and showed poor prognosis in CCA patients. In addition, miR-181b-5p overexpression enhanced cell proliferation, migration, and invasion by targeting PARK2. Overexpression of miR-181b-5p activated the PI3K/AKT signaling pathway, while knockdown of miR-181b-5p suppressed the signaling pathway. Increased expression of miR-181b-5p in CCA may be a potential diagnostic or/and prognostic indicator for CCA patients. The present data indicated miR-181b-5p acted as an oncogene in CCA through promoting tumor cell proliferation, migration, and invasion of CCA via the PTEN/PI3K/AKT signaling pathway by targeting PARK2, which might be a promising therapeutic target or biomarker for CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , MicroRNAs , Ubiquitina-Proteína Ligases/genética , Neoplasias dos Ductos Biliares/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colangiocarcinoma/genética , Humanos , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
20.
J Nat Med ; 76(1): 119-131, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34480707

RESUMO

Apigenin (APG) is a flavonoid widely distributed in fruits, vegetables, and herbs, with comprehensive pharmacological effects. In this paper, we report that APG can elicit a protective effect, which is comparable to those induced by gymnoside II/n-BuOH extracts of Bletilla striata, on SiO2-induced lung injury in vitro and in vivo. In vitro experiments showed that APG (25 µM) could restore the SiO2-decreased A549 cell viability and lower the apoptotic rate and the production of intracellular reactive oxygen species (ROS) in A549 cells treated with nm SiO2. Western blot results showed that APG (25 µM) could increase the level of Nuclear factor E2-related factor 2 (Nrf2) and its downstream proteins. In vivo experiments showed that APG (20 mg/kg) could potently alleviate the SiO2-elicited lung injury by enhancing the Nrf2 expression and thereby suppressing Bax/Bcl-2 pathway. The present study suggests that APG can significantly alleviate the SiO2-induced lung injury both in vitro and in vivo through, at least partially, activating Nrf2 expression.


Assuntos
Lesão Pulmonar , Nanopartículas , Apigenina/farmacologia , Apigenina/uso terapêutico , Apoptose , Humanos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transdução de Sinais , Dióxido de Silício/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA